首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
废物处理   3篇
  2003年   3篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Chemical weathering losses were calculated for two conifer stands in relation to ongoing studies on liming effects and ash amendments on chemical status, soil solution chemistry and soil genesis. Weathering losses were based on elemental depletion trends in soil profiles since deglaciation and exposure to the weathering environment. Gradients in total geochemical composition were assumed to reflect alteration over time. Study sites were Horröd and Hasslöv in southern Sweden. Both Horröd and Hasslöv sites are located on sandy loamy Weichselian till at an altitude of 85 and 190 m a.s.l., respectively. Aliquots from volume determined samples from a number of soil levels were fused with lithium metaborate, dissolved in HNO3, and analysed by ICP – AES. Results indicated highest cumulative weathering losses at Hasslöv. The weathering losses for the elements are in the following order:Si > Al > K > Na > Ca > MgTotal annual losses for Ca+Mg+K+Na, expressed in mmolc m-2 yr-1, amounted to c. 28 and 58 at Horröd and Hasslöv, respectively. Variations between study sites could not be explained by differences in bulk density, geochemistry or mineralogy. The accumulated weathering losses since deglaciation were larger in the uppermost 15 cm than in deeper B horizons for most elements studied.  相似文献   
2.
The chemistry, mineralogy and morphology of two soil profiles developed on till material of granitic and gneissic composition in south-western Sweden were studied in relation to podzolization processes. These soils were used for treatments with lime and wood ash. The profiles do not show characteristic Podzol morphology but qualify as Spodosols under Soil Taxonomy criteria and are probably typical for the coniferous forest soils of south-western Sweden. Podzolization features are clear but less well expressed than in classic Podzols. The distribution of major elements shows podzolization features with accumulation of sesquioxides in the B horizons and depletion in the eluvial horizons. Quartz and feldspars dominate the bulk soils reflecting the clear relationship between the composition of the soil and the underlying bedrock. Low amounts of clay contain an interlayered vermiculitic phase as the main phyllosilicate in which the degree of interlayering, known to be pH dependent, varies with depth and is at a maximum in the Bhs horizon. In the B horizons there are small but significant amounts of imogolite-type material which affect the adsorption of sulphate.  相似文献   
3.
A joint multidisciplinary investigation was undertaken to studythe effects of lime and wood ash applications on two Norway spruce forest Spodosolic soils. The two sites, typical for southern Sweden, were treated in 1994 with either 3.25 t ha-1 dolomite or 4.28 t ha-1 wood ash (Horröd site) or in 1984 with either 3.45 or 8.75 t ha-1 dolomite (Hasslöv site). Both sites show signs of acidification by atmospheric anthropogenic deposition and possessed low soil pH(4.3) and high concentrations of inorganic Al (35 M) in theupper illuvial soil solution. The prevailing soil conditions indicated perturbed soil processes. Following treatment with lime or wood ash, the soil conditions were dramatically altered. Cation exchange capacity (CEC) and base saturation (BS) was considerable increased after addition. Four years after application most of the added Ca and Mg was still present in the mor layer. Fifteen years after application,Mg in particular, became integrated deeper in the soil profile with a greater proportion lost by leaching incomparison to Ca. The concentrations of these ions were greatestin the mor layer soil solutions and Mg had higher mobility givinghigher concentrations also deeper in the profile. Four years after treatment, the application of wood ash and limeresulted in lower pH values and higher inorganic Al in mineral subsoil solutions compared to the untreated soil. We hypothesize that this was probably due to an increased flow of hydrogen ionsfrom the upper soil as a result of displacement by Ca and Mg ionsin the enlarged exchangeable pool. In contrast, fifteen years after lime and wood ash application, the mineral subsoil horizonspossessed a higher pH and lower soil solution Al content than theuntreated plots.Liming promoted soil microbial activity increasing soil respiration 10 to 36%. This is in the same range as net carbon exchange for forests in northern Sweden and could potentially have a climatological impact. The turnover of low molecularweight organic acids (LMWOA) by the soil microbial biomass werecalculated to contribute 6 to 20% to this CO2 evolution.At Horröd, citrate and fumarate were the predominant LMWOAs with lowest concentrations found in the treated areas. In contrast, at the Hasslöv site, propionate and malonate were the most abundant LMWOAs. Higher microbial activity in the upper soil horizons was also theprobable cause of the considerably higher DOC concentrations observed in the soil solution of ash and lime treated areas. Thelime-induced increase in DOC levels at Hasslöv could be attributed to increases in the 3–10 kDa hydrophobic size fraction. Liming also promoted nitrification with high liming doses leading to extreme concentrations of NO3 - (1 mM) in soil solution.At Hasslöv the community of mycorrhizal fungi was dramatically changed by the addition of lime, with only four of 24 species recorded being common to both control and treated areas.Many of the observed effects of lime and ash treatment can be viewed as negative in terms of forest sustainability. After fouryears of treatment, there was a decrease in the pH of the soil solution and higher concentrations of inorganic Al and DOC. Increased organic matter turnover, nitrification and NO3 -leakage were found at Hasslöv. Considering that the weathering rate and the mineral nutrient uptake by trees is mostprobably governed by mycorrhizal hyphae etchingmineral grains in the soil, it is important to maintain this ability of the mycorrhizal fungi. The lime and ash-induced changed mycorrhizal community structure may significantly affect this capability. In light of this investigation and others, as reviewed by Lundström et al. (2003), the implications ofliming on forest health are multifaceted with complex relationships occurring over both space and time.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号