首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
  国内免费   1篇
废物处理   22篇
环保管理   3篇
综合类   9篇
基础理论   5篇
污染及防治   6篇
  2018年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   6篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  1997年   1篇
  1995年   1篇
  1986年   1篇
  1972年   2篇
  1970年   1篇
  1966年   2篇
  1964年   1篇
  1962年   1篇
  1955年   1篇
排序方式: 共有45条查询结果,搜索用时 945 毫秒
1.
2.
A case study of landfill liquids addition using small diameter (5 cm) vertical wells is reported. More than 25,000 m3 of leachate was added via 134 vertical wells installed 3 m, 12 m, and 18 m deep over five years in a landfill in Florida, US. Liquids addition performance (flow rate per unit screen length per unit liquid head) ranged from 5.6 × 10?8 to 3.6 × 10?6 m3 s?1 per m screen length per m liquid head. The estimated radial hydraulic conductivity ranged from 3.5 × 10?6 to 4.2 × 10?4 m s?1. The extent of lateral moisture movement ranged from 8 to 10 m based on the responses of moisture sensors installed around vertical well clusters, and surface seeps were found to limit the achievable liquids addition rates, despite the use of concrete collars under a pressurized liquids addition scenario. The average moisture content before (51 samples) and after (272 samples) the recirculation experiments were 23% (wet weight basis) and 45% (wet weight basis), respectively, and biochemical methane potential measurements of excavated waste indicated significant (p < 0.025) decomposition.  相似文献   
3.
The numerical computer models that simulate municipal solid waste (MSW) bioreactor landfills have mainly two components – a biodegradation process module and a multi-phase flow module. The biodegradation model describes the chemical and microbiological processes. The models available to date include predefined solid waste biodegradation reactions and participating species. Some of these models allow changing the basic composition of solid waste. In a bioreactor landfill several processes like anaerobic and aerobic solids biodegradation, nitrogen and sulfate related processes, precipitation and dissolution of metals, and adsorption and gasification of various anthropogenic organic compounds occur simultaneously. These processes may involve reactions of several species and the available biochemical models for solid waste biodegradation do not provide users with the flexibility to simulate these processes by choice. This paper presents the development of a generalized biochemical process model BIOKEMOD-3P which can accommodate a large number of species and process reactions. This model is able to simulate bioreactor landfill operation in a completely mixed condition, when coupled with a multi-phase model it will be able to simulate a full-scale bioreactor landfill. This generalized biochemical model can simulate laboratory and pilot-scale operations in order to determine biochemical parameters important for simulation of full-scale operations.  相似文献   
4.
Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects.  相似文献   
5.
The ability of resistance-based sensors to measure in situ waste moisture content in a landfill was examined. One hundred and thirty-five resistance-based sensors were installed in a leachate recirculation well field at a bioreactor landfill in Florida, US. The performance of these sensors was studied for a period of over 6 years. The sensors were found to respond to an increase in moisture resulting from leachate recirculation. It was observed that 78% of sensors worked successfully in the field during the study period. The initial spatial average moisture content determined by the sensor readings (using a laboratory-derived calibration) was 42.8% compared to 23% from gravimetric readings. Eighteen sensors (13%) showed that they were saturated before liquid addition, and no change in moisture content was observed in these sensors during the study period. Laboratory-derived calibration methods resulted in an over-estimation of moisture content. An alternate field-calibration method, where wetted sensor output was assumed equal to the average of gravimetric measurements for wet samples, was evaluated. The final spatial average moisture contents were 64.2% and 44.4% for the laboratory-derived and field-derived calibration methodologies, respectively, compared to 45% measured gravimetrically from excavated waste samples. When moisture content was determined using a mass balance approach, the result was 34.6%. The results suggest that when appropriately calibrated, resistivity-based sensors can be used to obtain a reasonably accurate estimate of local moisture content. However, caution should be taken to extend the moisture content values that are representative of waste surrounding the sensors to estimate the overall moisture content on the landfill-wide scale.  相似文献   
6.
Review of state of the art methods for measuring water in landfills   总被引:1,自引:0,他引:1  
In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field.  相似文献   
7.
In situ ammonia removal in bioreactor landfill leachate   总被引:11,自引:0,他引:11  
Although bioreactor landfills have many advantages associated with them, challenges remain, including the persistence of NH(3)-N in the leachate. Because NH(3)-N is both persistent and toxic, it will likely influence when the landfill is biologically stable and when post-closure monitoring may end. An in situ nitrogen removal technique would be advantageous. Recent studies have shown the efficacy of such processes; however, they are lacking the data required to enable adequate implementation at field-scale bioreactor landfills. Research was conducted to evaluate the kinetics of in situ ammonia removal in both acclimated and unacclimated wastes to aid in developing guidance for field-scale implementation. Results demonstrate that in situ nitrification is feasible in an aerated solid waste environment and that the potential for simultaneous nitrification and denitrification (even under low biodegradable C:N conditions) in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. All rate data fit well to Monod kinetics, with specific rates of removal of 0.196 and 0.117 mgN/day-g dry waste and half-saturation constants of 59.6 and 147 mgN/L for acclimated and unacclimated wastes, respectively. Although specific rates of ammonia removal in the unacclimated waste are lower than in the acclimated waste, a relatively quick start-up of ammonia removal was observed in the unacclimated waste. Using the removal rate expressions developed will allow for estimation of the treatment times and volumes necessary to remove NH(3)-N from recirculated landfill leachate.  相似文献   
8.
Hydrogen sulfide (H2S) emitted from construction and demolition waste landfills has received increasing attention. Besides its unpleasant odor, longterm exposure to a very low concentration of H2S can cause a public health issue. In the case of construction and demolition (C&D) waste landfills, where gas collection systems are not normally required, the generated H2S is typically not controlled and the number of treatment processes to control H2S emissions in situ is limited. An attractive alternative may be to use chemically or biologically active landfill covers. A few studies using various types of cover materials to attenuate H2S emissions demonstrated that H2S emissions can be effectively reduced. In this study, therefore, the costs and benefits of H2S-control cover systems including compost, soil amended with lime, fine concrete, and autotrophic denitrification were evaluated. Based on a case-study landfill area of 0.04 km2, the estimated H2S emissions of 80900 kg over the 15-year period and costs of active cover system components (ammonium nitrate fertilizer for autotrophic denitrification cover, lime, fine concrete, and compost), ammonium nitrate fertilizer is the most cost effective, followed by hydrated lime, fine concrete, and yard waste compost. Fine concrete and yard waste compost covers are expensive measures to control H2S emissions because of the large amount of materials needed to create a cover. Controlling H2S emissions using fine concrete and compost is less expensive at landfills that provide on-site concrete recovery and composting facilities; however, ammonium nitrate fertilizer or hydrated lime would still be more cost effective applications.  相似文献   
9.
Landfill gas collection data from wet landfill cells were analyzed and first-order gas generation model parameters were estimated for the US EPA landfill gas emissions model (LandGEM). Parameters were determined through statistical comparison of predicted and actual gas collection. The US EPA LandGEM model appeared to fit the data well, provided it is preceded by a lag phase, which on average was 1.5 years. The first-order reaction rate constant, k, and the methane generation potential, L(o), were estimated for a set of landfills with short-term waste placement and long-term gas collection data. Mean and 95% confidence parameter estimates for these data sets were found using mixed-effects model regression followed by bootstrap analysis. The mean values for the specific methane volume produced during the lag phase (V(sto)), L(o), and k were 33 m(3)/Megagrams (Mg), 76 m(3)/Mg, and 0.28 year(-1), respectively. Parameters were also estimated for three full scale wet landfills where waste was placed over many years. The k and L(o) estimated for these landfills were 0.21 year(-1), 115 m(3)/Mg, 0.11 year(-1), 95 m(3)/Mg, and 0.12 year(-1) and 87 m(3)/Mg, respectively. A group of data points from wet landfills cells with short-term data were also analyzed. A conservative set of parameter estimates was suggested based on the upper 95% confidence interval parameters as a k of 0.3 year(-1) and a L(o) of 100 m(3)/Mg if design is optimized and the lag is minimized.  相似文献   
10.
Landfill fires create a critical problem for landfill operators and require investigation of its occurrence and the conditions that favor its initiation. Subsurface fires are considered the most significant due to the difficulty in determining their location and extent. These fires are mainly caused by spontaneous combustion, combustion due to high temperature in absence of flame. This study investigates the effect of moisture content, oxygen concentration and leachate components on spontaneous ignition, combustion initiation, and self-heating of solid waste. A new procedure for testing spontaneous ignition is described; however, variations in solid waste components and landfill conditions can create some limitations to its use. The presence of water and dissolved solids in leachate was found to accelerate chemical self-heating of the solid waste. Oxygen concentration at 10% by volume can sustain chemical oxidation but did not promote accelerated burning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号