首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
废物处理   1篇
综合类   15篇
基础理论   13篇
污染及防治   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
  1963年   1篇
排序方式: 共有30条查询结果,搜索用时 375 毫秒
1.
2.
Pigeons were released at two sites of equal distance from the loft, one within a magnetic anomaly, the other in magnetically quiet terrain, and their tracks were recorded with the help of GPS receivers. A comparison of the beginning of the tracks revealed striking differences: within the anomaly, the initial phase lasted longer, and the distance flown was longer, with the pigeons' headings considerably farther from the home direction. During the following departure phase, the birds were well homeward oriented at the magnetically quiet site, whereas they continued to be disoriented within the anomaly. Comparing the tracks in the anomaly with the underlying magnetic contours shows considerable differences between individuals, without a common pattern emerging. The differences in magnetic intensity along the pigeons' path do not differ from a random distribution of intensity differences around the release site, indicating that the magnetic contours do not directly affect the pigeons' routes. Within the anomaly, pigeons take longer until their flights are oriented, but 5 km from the release point, the birds, still within the anomaly, are also significantly oriented in the home direction. These findings support the assumption that magnetically anomalous conditions initially interfere with the pigeons' navigational processes, with birds showing rather individual responses in their attempts to overcome these problems.  相似文献   
3.
The biodegradation of urea and condensation products thereof (ureaforms or methyleneureas), their nitrification, and their influence on the respiratory rate of soil was studied over periods of up to 100 days. The total methyleneurea content of the soil was determined after its acidic extraction, using a convenient colorimetric assay, and an HPLC protocol was established to analyze for specific components of methyleneureas. Urea, unfractionated methyleneureas, and hot-water soluble methyleneureas were rapidly metabolized to ammonium, which accumulated to high concentrations and was consequently oxidized to nitrate; an accumulation of nitrite was observed during urea but not during methyleneurea degradation. Hot water-insoluble methyleneureas were degraded much more slowly, and ammonium formed from these compounds was oxidized to nitrate without being released in significant amounts. These results suggest that the use of methyleneureas of optimized composition with regard to their water solubility may help to resolve problems such as the toxicity of ammonia to plant growth as well as nitrogen loss by leaching of nitrate, denitrification and volatilization.  相似文献   
4.
5.
Passerine migrants require light from the blue-green part of the spectrum for magnetic compass orientation; under yellow light, they are disoriented. European robins tested under a combination of yellow light and blue or green light showed a change in behavior, no longer preferring their seasonally appropriate migratory direction: in spring as well as in autumn, they preferred southerly headings under blue-and-yellow and northerly headings under green-and-yellow light. This clearly shows that yellow light is not neutral and suggests the involvement of at least two types of receptors in obtaining magnetic compass information, with the specific interaction of these receptors being rather complex.  相似文献   
6.
Pigeon homing: the effect of a clock-shift is often smaller than predicted   总被引:1,自引:0,他引:1  
This analysis is based on 103 releases with 6-h clock-shifted pigeons of various ages and experiences. Resetting the internal clock normally leads to a significant change in initial orientation; however, in half of the cases, the induced deflections are significantly smaller than predicted by the sun compass hypothesis. The relative size of the deflections decreases with increasing age and experience (Fig. 3). Only young pigeons with limited experience respond as expected, while old birds show deflections which are, on the average, only slightly more than half of the predicted size, except at extremely familiar sites (Table 2). There is no difference between fast and slow shifts (Fig. 4). It is not possible to clearly specify under what circumstances smaller deflections occur; previous clock-shifts (Fig. 5), familiarity with the release site (Table 4) and duration of the shifting procedure (Table 5) do not seem to be the reasons. Clock-shifting also tends to decrease the vector lengths and has a marked effect on homing performance (Table 7). Nevertheless, considerable numbers of clock-shifted birds return on the day of release before their internal clock has begun to be reset back to normal. The general role of the sun compass in bird orientation is considered and theoretical implications of our findings are discussed in view of the map and compass-model and the possibility that an alternative, non-time-compensating compass is used in parallel with the sun compass.  相似文献   
7.
Summary A group of experienced homing pigeons vas subjected to a 6 h slow shift of their internal clock and kept under these conditions for more than 2 months. During the overlap time between the natural and artificial photoperiods they were released for training flights to familiarize them with an area while living in a permanent shift.Tested outside the permanent shift training range, the experimentals always deviated about 30° clockwise from the mean of their controls, markedly less than in a regular 6 h slow shift. Inside the permanent shift training range, however, they oriented like the controls (Fig. 2). When their internal clock was returned to normal, the birds showed a larger counterclockwise deflection on their first flight, which was roughly comparable to the effect of a regular 6 h fast shift (Fig. 3). On later flights after normalization, this large shift was no longer found; instead we observed a roughly 30° counterclockwise deflection when they were released inside the permanent shift training range in the morning. This deflection did not seem to occur in the afternoon or outside the permanent shift training range (Figs. 4, 5), and it disappeared when the birds were repeatedly released from the same site (Fig. 6).The occurrence or non-occurrence of the deflection was independent of the duration of the shift or the time passed after normalization; it seemed to depend solely on whether the birds had become familiar with a given site in the situation of the permanent shift. This argues against an effect based on the sun compass. We tend to assume that the still unknown navigational map is involved. In this case, however, as the deflection is independent of the home direction and the type of release site bias, the factors in question would act very differently from the gradients on which the traditional concepts of the navigational map are based. The processes establishing and updating the map and their possible differences are discussed.Died on August 17, 1980  相似文献   
8.
9.
Summary This study compares the orientation of untreated pigeons and pigeons subjected to olfactory deprivation at two lofts near Pisa, Italy, at a loft at Ithaca, New York, USA, and at a loft at Frankfurt a.M., FRG. The experimental birds were rendered anosmic by nasal plugs until Gingicain, a local anaesthetic, was applied shortly before release. The Italian and American control pigeons appeared to orient towards home equally well, while the control pigeons in Germany frequently preferred directions that deviated significantly from the home direction. The effect of olfactory deprivation was small in the USA and in Germany; it was significantly larger in Italy, indicating that Italian pigeons depend on olfactory information to a much greater extent. These findings suggest that there are important regional differences in the strategies and cues pigeons use to navigate. The varied roles of olfactory information, and the reasons for these differences are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号