首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
废物处理   1篇
环保管理   1篇
污染及防治   2篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 13 毫秒
1
1.
An investigation was carried out to establish the physical, mechanical and durability characteristics of an unprocessed pulverised fuel ash (PFA) from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. This was aimed at establishing the suitability of the ash in the construction of the Church Village Bypass (embankment and pavement) and also in concrete to be used in the construction of the proposed highway.Concrete made using binder blends using various levels of PFA as replacement to Portland cement (PC) were subjected to compressive strength tests to establish performance. The concrete was also subjected to sodium sulphate attack by soaking concrete specimens in sulphate solution to establish performance in a sulphatic environment. Strength development up to 365 days for the concrete made with PC–PFA blends as binders (PC–PFA concrete), and 180 days for the PC–PFA paste, is reported.The binary PC–PFA concrete did not show good early strength development, but tended to improve at longer curing periods. The low early strength observed means that PC–PFA concrete can be used for low to medium strength applications for example blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.  相似文献   
2.
Sustainable construction: composite use of tyres and ash in concrete   总被引:2,自引:0,他引:2  
An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.  相似文献   
3.
The homogeneous gas phase hydrolysis kinetics of the above compounds has been investigated in the 470° to 620°K temperature range. The following biomolecular rate constants were obtained: k(CCl3COCl) = 2.54 × 106 exp (?18,350 ± 1750)/RT, k(CClH2COCl) = 1.14 × 108 exp (?22,630 ± 780)/RT, and fr(COCl2) = 9192 exp (?14,200 ± 2100)/RT liter mole?1 sec?1. Experimental difficulties prevented data being obtained for CHCl2COCl. The half lives of these species with respect to homogeneous gas phase hydrolysis in the atmosphere have been estimated and it is concluded that this is not an efficient conversion process. Heterogeneous hydrolysis by water droplets may be a more efficient atmospheric scavenging process for these compounds.  相似文献   
4.
Rates of CO2 production in the reaction CO + OH and CO + OH + halocarbon have been used to determine rate constants for some OH + halocarbon reactions at 29.5°C relative to that of k(CO + OH) = 2.69 × 10?13 cm3 molecule?1 sec?1. The following rate constants were obtained: k(OH + CH3Cl) = 3.1 ± 0.8, k(OH + CH2Cl2) = 2.7 ± 1.0, k(OH + C2H5Cl) = 44.0 ± 25, k(OH + CICH2CH2CI) = 6.5, (<29) and k(OH + CH3CCl3) = 2.1 (<5.7) cm3 molecule?1 sec?1 × 10?14. The k values, CH2Cl2 excepted, are in substantial agreement with determinations made in nonoxygen environments. The present results for CH2Cl2 are almost certainly in error due to difficulties with the competitive approach used.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号