首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
安全科学   1篇
废物处理   1篇
综合类   3篇
污染及防治   1篇
评价与监测   1篇
社会与环境   1篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2001年   1篇
  1999年   1篇
  1983年   1篇
  1971年   1篇
排序方式: 共有8条查询结果,搜索用时 26 毫秒
1
1.
Erisman  J. W.  Hensen  A.  Fowler  D.  Flechard  C. R.  Grüner  A.  Spindler  G.  Duyzer  J. H.  Weststrate  H.  Römer  F.  Vonk  A. W.  Jaarsveld  H. v. 《Water, Air, & Soil Pollution: Focus》2001,1(5-6):17-27
Between 1993 and 1999 two EU funded projects wereexecuted aimed at (i) the development of drydeposition monitoring methods for core sites andlarge scale application, (ii) the installation andrunning of three core sites in Europe and (iii) the improvement and validation of models used forregional application. This article provides anoverview of the development of depositionmonitoring stations and the main results of thethree core sites, which were operated between1995 and 1998. Furthermore, the results of thedevelopment of a low cost monitoring system arepresented. Continuous measurements were made ofboth wet and dry deposition of sulphur andnitrogen components and base cations. The 4 yearsof data show a decrease in sulphur loads and notrend for the other components. It is shown thatthe surface affinities for sulphur depositionalso changed during the years, underpinning theneed for dry deposition monitoring. A conditionaltime average gradient system was successfullydeveloped and tested and provides a good meansfor low cost monitoring of dry deposition fluxes.The costs can be reduced by a factor of 3–4 without losing the accuracy of the annual average gas fluxes.  相似文献   
2.
The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air–sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean–land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.  相似文献   
3.
There is increasing evidence of the coexistence of trophic and environmental constraints belowground. While too often ignored in current literature, the extent to which phosphorus is relevant for soil biota was demonstrated in this study by positive correlations of soil C/P and N/P ratios with all the measured microbial parameters (biomass, density and activity), with the numerical abundance of roundworms (Nematoda) and potworms (Enchytraeidae) from lower trophic levels and with the roundworm biomass. Total worm biomass seems dependent on land use, being in rangelands about twice as high as in croplands, although the relative contribution of potworms remains comparable for both land use types (49?±?20 % SD versus 45?±?27 % SD). Besides soil [P], soil type plays an important role in the relative biomass of potworms compared to roundworms. Soil parameters (here pH, C/P and N/P ratios) are better predictors for the abundance and biomass of roundworms than microbial parameters. We also propose a graphical way to visualize the major responses of basal consumers to their microbial drivers.  相似文献   
4.
The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass–abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to all users.  相似文献   
5.
This study addresses spontaneous inferences about causes and consequences of performance‐related behavior of leaders and subordinates. Respondents (leaders and subordinates) completed sentences describing the behavior of leaders or subordinates. It was expected that behavior of leaders induces more causal analysis because it can more strongly affect others. This hypothesis was confirmed, suggesting that position labels can trigger control motivation. It was also found that leader behavior induced more inferences about the consequences for the environment than for the actor, supporting the assumption that leaders are seen as persons who affect their environment. In addition, the data indicate that subordinate respondents made more inferences about causes as well as consequences than leaders did, and have a more positive view of others. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
6.
The soil ecosystem is composed of various groups of organisms which have complex relations. The physical structure and chemical characteristics of the soil provide the boundary conditions. In view of various deteriorating human activities, it is important to find soil quality characteristics with respect to its most important function: the ecological function. An enumeration has been given of chemical, physical and biological soil parameters which are more or less important for soil quality. Several of these parameters are discussed. For use as indicators of deterioration, for a given site, the optimum values of the soil parameters have to be established, as well as acceptable deviations from the optimum, taking into account natural fluctuation. It is concluded that, due to lack of data, such an approach is not possible at this moment. However, it might be possible to identify those soil parameters which should be taken into consideration when evaluating human activities.Paper presented at a Symposium held on 14 and 15 October 1982, in Utrecht, The Netherlands.  相似文献   
7.
8.
Ecological risk of chemicals is measured by the quotient of predicted no-effect concentrations and predicted exposure concentrations, which are hard to assess for manufactured nanomaterials (NMs). This paper proposes modifications to currently used models, in order to make them suitable for estimating exposure concentrations of NMs in the aquatic environment. We have evaluated the adequacy of the current guidance documents for use with NMs and conclude that nano-specific fate processes, such as sedimentation and dissolution need to be incorporated. We have reviewed the literature on sedimentation and dissolution of NMs in environmentally relevant systems. We deduce that the overall kinetics of water-sediment transport of NMs should be close to first order. The lack of data on dissolution of NMs under environmentally realistic conditions calls for a pragmatic decision on which rates to be used in modeling. We find that first order removal kinetics for dissolution seems adequate. Based on limited data from literature, probable removal rates range from 0 to 10(-4)s(-1) for sedimentation, and from 0 to 10(-5)s(-1) for dissolution. Further experimental data at environmentally relevant conditions for sedimentation and dissolution of NMs is needed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号