首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   1篇
环保管理   2篇
基础理论   1篇
污染及防治   3篇
  2022年   1篇
  2017年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Hashimoto Y  Sato T 《Chemosphere》2007,69(11):1775-1782
The use of a phosphorus amendment in altering Pb to a chemically less mobile phase is a promising strategy based on minimizing ecotoxicological risk and improving time and cost efficiency. This study evaluated crystalline and poorly-crystalline hydroxyapatite sorbents on removal of aqueous Pb in response to reaction time, solution pH, and Pb concentration. Batch experiments were conducted using a commercially-available crystalline hydroxyapatite (HA), and two poorly-crystalline hydroxyapatites synthesized from gypsum waste (CHA) and incinerated ash of poultry waste (MHA). Poorly-crystalline hydroxyapatites had greater capacity for Pb removal from a solution with a wider pH range as compared to a crystalline hydroxyapatite. The maximum sorption capacity of Pb determined by the Langmuir model was 500 mg g−1 for CHA, 277 mg g−1 for MHA and 145 mg g−1 for HA. Removal of aqueous Pb by CHA was not dependent on solution pH, with a 98.8% reduction throughout the solution pH range of 2–9, whereas aqueous Pb removal by HA and MHA was pH-dependent with less removal in the neutral solution pH. Poorly-crystalline hydroxyapatites may provide an effective alternative to existing remediation technologies for Pb-contaminated sites.  相似文献   
2.
Metal stabilization using soil amendments is an extensively applied, economically viable and environmentally friendly remediation technique. The stabilization of Pb, Zn and As in contaminated soils was evaluated using natural starfish (NSF) and calcined starfish (CSF) wastes at different application rates (0, 2.5, 5.0 and 10.0 wt%). An incubation study was conducted over 14 months, and the efficiency of stabilization for Pb, Zn and As in soil was evaluated by the toxicity characteristic leaching procedure (TCLP) test. The TCLP-extractable Pb was reduced by 76.3–100 and 91.2–100 % in soil treated with NSF and CSF, respectively. The TCLP-extractable Zn was also reduced by 89.8–100 and 93.2–100 % in soil treated with NSF and CSF, respectively. These reductions could be associated with the increased metal adsorption and the formation of insoluble metal precipitates due to increased soil pH following application of the amendments. However, the TCLP-extractable As was increased in the soil treated with NSF, possibly due to the competitive adsorption of phosphorous. In contrast, the TCLP-extractable As in the 10 % CSF treatment was not detectable because insoluble Ca–As compounds might be formed at high pH values. Thermodynamic modeling by visual MINTEQ predicted the formation of ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and portlandite (Ca(OH)2) in the 10 % CSF-treated soil, while SEM–EDS analysis confirmed the needle-like structure of ettringite in which Pb was incorporated and stabilized in the 10 % CSF treatment.  相似文献   
3.
Journal of Material Cycles and Waste Management - Arsenic (As), selenium (Se), and chromium (Cr) are harmful to humans at certain concentrations, and can possibly be eluted from coal ash (fly ash)...  相似文献   
4.
For immobilization technologies to be successful, the use of readily available and cost advantageous amendment is important when the remediation targets vast amounts of contaminated soils. The objectives of this study were to investigate whether the byproduct-synthesized hydroxyapatite can be used as an immobilizing amendment for dissolved Pb from a shooting range soil, and to model the kinetic data collected from dissolution experiments. A soil–solution kinetic experiment was conducted under fixed pH conditions as a function of time. A Pb-contaminated soil was reacted with various hydroxyapatite amendments to determine the dissolution rate and mineral products of soil Pb. Three types of amendments used were pure hydroxyapatite (HA), and poorly crystalline hydroxyapatites synthesized from gypsum waste (CHA), and synthesized from incinerated poultry litter (PHA). The dissolved Pb concentration decreased with the addition of amendments at pH 3–7. Both CHA and PHA were more effective than HA for attenuating Pb dissolution at pH 6 and above. According to the thermodynamic calculation at pH 6, the dissolved Pb concentration for CHA and PHA treatments was predicted to be 66% and 50% lower than that of HA treatment, respectively. A better Pb immobilization effect demonstrated by CHA and PHA resulted in their greater solubility at higher pH, which may promote the formation of chloropyromorphite precipitates. Dissolution kinetics of soil Pb was adequately explained by pseudo-first order and pseudo-second order equations in acid pH ranges. According to the ion exchange model, an adequate agreement between the experimental data and regression curves was shown in the initial 40 min of the reaction process, but the accuracy of model predictability decreased thereafter. According to kinetic models and dissolution phenomena, CHA and PHA amendments had better Pb sorption capacity with rapid kinetics than pure hydroxyapatite at weak acid to neutral pH.  相似文献   
5.
Chemical immobilization technology utilizing poultry waste (PW) along with a native plant (Panicum maximum Jacq.) application was assessed for the attenuation of downward Pb dissolution and modification of Pb speciation in solid and liquid phases in the soil. A large column study with and without plant and PW applications was conducted using a Pb contaminated soil collected from a shooting range area. The PW application reduced water-extractable Pb by about 43% of that of the treatment without the PW and plant applications (Control). The cumulative Pb amount in column leachates over 100d was increased by the PW amendment (0.32mg) compared to Control (0.27mg), but was reduced to 0.23mg by the combined use of plant and PW amendment. Sequential extraction analysis revealed that the Pb fractions of PW-amended soils were shifted to less soluble phases as indicated by an increased residual fraction (20%) and decreased exchangeable and carbonate fractions (22%) than those in the Control soil. Thermodynamic equilibrium calculations demonstrated that predicted Pb(2+) activity was saturated with respect to cerussite in the Control soil and was supersaturated with respect to chloropyromorphite in the PW-amended soils. Our results suggest that the use of plant in combination with PW as a Pb immobilizing amendment attenuated downward Pb leaching and altered Pb species to more geochemically stable phases.  相似文献   
6.
To formulate successful phytostabilization strategies in a shooting range soil, understanding how heavy metals are immobilized at the molecular level in the rhizosphere soil is critical. Lead (Pb) speciation and solubility in rhizosphere soils of five different plant species were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy and chemical extraction. The EXAFS analysis indicated that Pb occurred as PbCO (37%), Pb sorbed to organic matter (Pb-org: 15%), and Pb sorbed to pedogenic birnessite and/or ferrihydrite (Pb-ox: 36%) in the bulk soil. Comparison of the EXAFS spectra between bulk and rhizosphere soils demonstrated notable differences in fine structure, indicating that Pb species had been modified by rhizosphere processes. The estimated proportion of PbCO (25%) in the buckwheat soil was smaller than the other rhizosphere soils (35-39%). The addition of P significantly reduced Pb solubility in the bulk and rhizosphere soil except in the rhizosphere of buckwheat, for which the Pb solubility was 10-fold greater than in the other P-amended soils. This larger solubility in the buckwheat rhizosphere could not be explained by the total Pb speciation in the soil but was presumably related to the acidifying effect of buckwheat, resulting in a decrease of the soil pH by 0.4 units. The reduced Pb solubility by P amendment resulted from the transformation of preexisting PbCO (37%) into Pb(PO)Cl (26-32%) in the bulk and rhizosphere soils. In the P-amended rhizosphere soils, Pb-org species were no longer detected, and the Pb-ox pool increased (51-57%). The present study demonstrated that rhizosphere processes modify Pb solubility and speciation in P-amended soils and that some plant species, like buckwheat, may impair the efficiency of Pb immobilization by P amendments.  相似文献   
7.
Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer + rapeseed residue (N70 + R), 30% mineral N fertilizer + rapeseed residue (N30 + R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70 + R and N30 + R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号