首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
废物处理   1篇
环保管理   2篇
  2018年   1篇
  2016年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Journal of Material Cycles and Waste Management - The objective of this study is to recover SiC from silicon wafer cutting slurry using physical separation and acid/alkali purification processes....  相似文献   
2.
Microbial fuel cells (MFCs) are one of the bioreactors that produce electrons by metabolizing substrate from microorganisms, and have the ability to both degrade waste solution and produce electrons. Recently, the activity of microorganisms has limited the power performance of MFCs. Chaos has been used to stimulate activity of microorganisms, but it has not been used previously in MFCs. In this study, three types of acclimations – native acclimation (NA), MFC acclimation (MFCA), and MFC embedded with chaotic electric field acclimation (CMFCA) – are applied to realize their performance and chemical oxygen demand (COD) removal in MFCs, respectively. Results show that the current density and the power density of CMFCA were improved by 1.33 and 1.25 times than MFCA, and the COD removal of CMFCA reached 85% after five days. In addition, the acclimation stage at the condition of CMFCA appeared after 10 days, but was not found for the MFCA system. These observations would provide positive information for improving the performance of MCFs in the future.  相似文献   
3.
Nowadays microbial fuel cells (MFCs) are a rapidly evolving field and studied extensively because of their simultaneous dual functions of decomposing organic waste matter and eco-power generation. Now, facing their low power density, multiple effects including various gravity conditions ranging from 0 G to 2 G and three kinds of geometric flow channel (serpentine channel, serpentine tapered channel and bio-mixer channel) in MFCs were studied because of their ability to significantly impact the performance of MFCs.Numerical simulation technology, with its significant lessening of time needed and saving experimental costs required was used in this study. Results show that a better power performance was found at a condition of 0.125 G and Reynolds number Re = 41.3 regardless of flow channel in MFCs. In addition, the bio-mixer channel of the flow channels in MFCs will have a better performance than the other two channels because of its lower pressure drop and higher power generation. These findings will provide useful information on enhancing the performance of MFCs, especially with the application of low gravity conditions in the future.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号