首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
安全科学   1篇
环保管理   1篇
污染及防治   3篇
社会与环境   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 125 毫秒
1
1.
The microalgae Chlamydomonas reinhardtii was used for the biosorption of Hg(II), Cd(II) and Pb(II) ions. The maximum adsorption of Hg(II) and Cd(II) ions on Chlamydomonas reinhardtii biomass was observed at pH 6.0 and the corresponding value for Pb(II) ions was 5.0. The biosorption of Hg(II), Cd(II) and Pb(II) ions by microalgae biomass increased as the initial concentration of Hg(II), Cd(II) and Pb(II) ions increased in the biosorption medium. The maximum biosorption capacities of microalgae for Hg(II), Cd(II) and Pb(II) ions were 72.2+/-0.67, 42.6+/-0.54 and 96.3+/-0.86 mg/g dry biomass, respectively. The affinity order for algal biomass was Pb(II)>Hg(II)>Cd(II). FT-IR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which were responsible for biosorption of metal ions. Biosorption equilibrium was established in about 60 min and the equilibrium was well described by the Freundlich biosorption isotherms. Temperature change in the range of 5-35 degrees C did not affect the biosorption capacity. The microalgae could be regenerated using 0.1 M HCl, with up to 98% recovery, which allowed the reuse of the biomass in six biosorption-desorption cycles without any considerable loss of biosorption capacity.  相似文献   
2.
Two measures of aggressivity of Australian passenger vehicles have been developed. The first measures the aggressivity to occupants of other cars. This type of aggressivity rating is based on two-car crashes between passenger vehicles and measures the injury risk each make/model in the collisions poses to the drivers of the other vehicles. The second measures aggressivity to unprotected road users. These aggressivity ratings reflect the threat of severe injury to pedestrians, bicyclists and motorcyclists by die make/model of vehicle colliding with them. This analysis was based on nearly 102,000 drivers involved in tow-away crashes with the makes/models which were the focus of the study and on nearly 22,000 injured pedestrians, bicyclists, and motorcyclists. The results suggest that crasbworthiness and aggressivity are two different aspects of a vehicle's safety performance, with good performance on one dimension not necessarily being associated with good performance on the other.  相似文献   
3.
4.

Background and purpose

The biosorption of Cr(VI) from aqueous solution has been studied using free and immobilized Pediastrum boryanum cells in a batch system. The algal cells were immobilized in alginate and alginate?Cgelatin beads via entrapment, and their algal cell free counterparts were used as control systems during biosorption studies of Cr(VI).

Methods

The changes in the functional groups of the biosorbents formulations were confirmed by Fourier transform infrared spectra. The effect of pH, equilibrium time, initial concentration of metal ions, and temperature on the biosorption of Cr(VI) ion was investigated.

Results

The maximum Cr(VI) biosorption capacities were found to be 17.3, 6.73, 14.0, 23.8, and 29.6?mg/g for the free algal cells, and alginate, alginate?Cgelatin, alginate?Ccells, and alginate?Cgelatin?Ccells at pH?2.0, which are corresponding to an initial Cr(VI) concentration of 400?mg/L. The biosorption of Cr(VI) on all the tested biosorbents (P. boryanum cells, alginate, alginate?Cgelatin, and alginate?Ccells, alginate?Cgelatin?Ccells) followed Langmuir adsorption isotherm model.

Conclusion

The thermodynamic studies indicated that the biosorption process was spontaneous and endothermic in nature under studied conditions. For all the tested biosorbents, biosorption kinetic was best described by the pseudo-second-order model.  相似文献   
5.
The food processing sector in Vietnam plays a vital role in its economic development, but its rapid growth seems to go hand-in-hand with environmental deterioration. Several decades of applying the conventional end-of-pipe approach made clear that it only deals with treating the symptoms. It is necessary to combine technological (end-of-pipe) solutions to overcome urgent pollution problems with ways to prevent wastes from being generated or to reuse their valuable material. This article presents a methodology for analyzing the possibilities for waste prevention in food processing industry in Vietnam.  相似文献   
6.
Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mg g−1 and for Cu(II) 6.15 and 17.8 mg g−1 dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmol g−1 for Ni(II) and 0.162 mmol g−1 for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号