首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
安全科学   1篇
废物处理   3篇
环保管理   4篇
基础理论   8篇
污染及防治   15篇
评价与监测   9篇
社会与环境   3篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2018年   3篇
  2017年   2篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
The Singrauli region in the southeastern part of Uttar Pradesh, India is one of the most polluted industrial sites of Asia. It encompasses 11 open cast coalmines and six thermal power stations that generate about 7,500 MW (about 10% of India’s installed generation capacity) electricity. Thermal power plants represent the main source of pollution in this region, emitting six million tonnes of fly-ash per annum. Fly-ash is deposited on soils over a large area surrounding thermal power plants. Fly-ashes have high surface concentrations of several toxic elements (heavy metals) and high atmospheric mobility. Fly ash is produced through high-temperature combustion of fossil fuel rich in ferromagnetic minerals. These contaminants can be identified using rock-magnetic methods. Magnetic susceptibility is directly linked to the concentration of ferromagnetic minerals, primarily high values of magnetite. In this study, magnetic susceptibility of top soil samples collected from surrounding areas of a bituminous-coal-fired power plant were measured to identify areas of high emission levels and to chart the spatial distribution of airborne solid particles. Sites close to the power plant have shown higher values of susceptibility that decreases with increasing distance from the source. A significant correlation between magnetic susceptibility and heavy metal content in soils is found. A comparison of the spatial distribution of magnetic susceptibility with heavy-metal concentrations in soil samples suggests that magnetic measurements can be used as a rapid and inexpensive method for proxy mapping of air borne pollution due to industrial activity.  相似文献   
2.
Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L?1; Cu was 392 μg L?1 at the extreme downstream, Allahabad and Ni was 146 μg L?1 at midstream, Agra. Largest concentration of Cu was 617 μg kg?1, Ni 1,621 μg kg?1 at midstream while Pb was 1,214 μg kg?1 at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg?1 in Oreochromis niloticus and 1.55 μg kg?1 in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg?1 in O. niloticus and 124 μg kg?1 in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02?×?10?4 which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.  相似文献   
3.
Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and 13C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio = 28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio = 29). PHB production yield (Yp/s) was highest (0.184 g g?1 COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.  相似文献   
4.
Physical, chemical and microbiological efficiencies of Sewage Treatment Plants (STPs) located in Delhi's watershed in context of different treatment technologies employed in these plants have been determined. There were in all seventeen STPs treating domestic wastewater which were studied over a period of 12 months. These STPs were based on Conventional Activated sludge process (ASP), Extended aeration (Ex. Aeration), physical, chemical and biological removal treatment (BIOFORE) and oxidation pond treatment process. Results suggests that except "Mehrauli" STP which was based on Extended aeration process and "Oxidation pond", effluents from all other STPs exceeded FC standard of 10(3) MPN/100 ml for unrestricted irrigation criteria set by National river conservation directorate (NRCD). Actual integrated efficiency (IE(a)) of each STP was evaluated and compared with the standard integrated efficiency (IE(s)) based upon physical, biological and microbiological removal efficiencies depending upon influent sewage characteristics. The best results were obtained for STPs employing extended aeration, BIOFORE and oxidation pond treatment process thus can be safely used for irrigation purposes.  相似文献   
5.
A biomonitoring study was conducted to investigate the responses of plants exposed to power plant emission in a dry tropical environment. For this purpose, five sampling sites were selected in the prevailing wind direction (NE) at different distance to thermal power plant (TPP) within 8.0 km range and a reference site was selected in eastern direction at a distance of 22.0 km. The two most common tree species, Ficus benghalensis L. (Evergreen tree) and Dalbergia sisso Roxb. (deciduous tree) were selected as test plants. Ambient sulphur dioxide (SO(2)), nitrogen dioxide (NO(2)), suspended particulate matter (SPM), respirable suspended particulate matter (RSPM), dust-fall rate (DFR) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b and carotenoids), ascorbic acid, sugar and sulphate-sulphur (SO4(2-)-S) contents were measured. Ambient SO(2), NO(2), SPM, RSPM and DFR showed significant spatial and temporal variation at different sites. Considerable reduction in pigment (chlorophyll a, chlorophyll b and carotenoids) and sugar contents were observed at sites receiving higher pollution load. Ascorbic acid exhibited significant positive correlation with pollution load. Accumulation of SO4(2-)-S in leaf tissue showed significant positive correlation with ambient SO(2) concentration at all the sites. At the same time, SO4(2-)-S showed significant negative correlation with pigment and sugar content. D. sisso Roxb. tree was found to be more sensitive as compared to F. benghalensis L. tree.  相似文献   
6.
Generally speaking, landfilling is one of the prominent methods of waste disposal around the globe, but some under-developed and developing countries still continue to practice uncontrolled open dumping of waste. These uncontrolled landfills pose a relatively high threat to the various elements of the environment in comparison with the conventional engineered landfills that are used in many developed countries. However, some closed, un-engineered landfills do exist in developing countries. This paper presents a novel approach to compare the pollution potential of uncontrolled landfills using an index. The landfill pollution potential index (LPPI) has been developed using the Delphi technique and is an aggregation of six pollution indices that have already been developed for the quantification of different environmental elements. The LPPI is an increasing scale index, in which a higher index value indicates a higher pollution threat. The LPPI of a landfill in Delhi was calculated and the high LPPI value indicates that the respective landfill poses a significant threat to the environment. The LPPI can be used as an aid to diagnose a landfill's pollution potential relative to other landfills and therefore also to rank remediation investments.  相似文献   
7.
8.
Abstract

The production of broiler chickens has become one of the largest sectors in U.S. agriculture, and the growing demand for poultry has led to an annual production growth rate of 5%. With increased demand for poultry, litter management has become a major challenge in the agriculture industry. Although the catalytic steam gasification has been accepted as a possible and feasible method for litter management, concern has been expressed about the presence of nitrogen and phosphorus containing species in the fuel gas and/or in the final solid residue. The possible release of phosphorus as phosphine gas in the fuel gas can have an adverse impact on the environment. Similarly, possible release of ammonia from the nitrogen containing species is also not acceptable. Hence, under partial U.S. Department of Agriculture support, a study was conducted to examine the fate and the environmental impact of the nitrogen- and phosphorus-containing species released during catalytic steam gasification of poultry litter. From various preliminary tests, it was concluded that most (~100%) of the phosphorus would remain in the residue, and some (20–70%) of the nitrogen would end up as ammonia in the fuel gas. The effects of temperature, catalyst loading, and type of catalyst on ammonia liberation were studied in a muffled furnace setup at atmospheric pressure. The fraction of nitrogen released as ammonia was found to decrease with an increase in temperature during pyrolysis and steam gasification. It also decreased with an increase in catalyst loading.  相似文献   
9.
The production of broiler chickens has become one of the largest sectors in U.S. agriculture, and the growing demand for poultry has led to an annual production growth rate of 5%. With increased demand for poultry, litter management has become a major challenge in the agriculture industry. Although the catalytic steam gasification has been accepted as a possible and feasible method for litter management, concern has been expressed about the presence of nitrogen and phosphorus containing species in the fuel gas and/or in the final solid residue. The possible release of phosphorus as phosphine gas in the fuel gas can have an adverse impact on the environment. Similarly, possible release of ammonia from the nitrogen containing species is also not acceptable. Hence, under partial U.S. Department of Agriculture support, a study was conducted to examine the fate and the environmental impact of the nitrogen- and phosphorus-containing species released during catalytic steam gasification of poultry litter. From various preliminary tests, it was concluded that most (approximately 100%) of the phosphorus would remain in the residue, and some (20-70%) of the nitrogen would end up as ammonia in the fuel gas. The effects of temperature, catalyst loading, and type of catalyst on ammonia liberation were studied in a muffled furnace setup at atmospheric pressure. The fraction of nitrogen released as ammonia was found to decrease with an increase in temperature during pyrolysis and steam gasification. It also decreased with an increase in catalyst loading.  相似文献   
10.
Catalyst recovery studies were conducted for gasified chars produced from steam gasification of Illinois #6 coal catalyzed with two different catalyst systems. A ternary (43.5 mol% Li2CO3-31.5 mol% Na2COr-25 mol% K2CO3) and a binary (29 mol% Na2CO3-71 mol% K2CO3) eutectic catalyst system were used for gasifying coal. Various extraction schemes, such as water extraction, H2SO4 extraction, and acetic acid extraction, were evaluated with respect to their extraction efficiencies. Effects of major process variables, such as solvent-to-char ratio, mixing time, temperature, and concentration, on the extraction efficiency were evaluated. A process schematic for the entire catalyst recovery, regeneration, and recycle scheme was developed and the preliminary process economics were determined based on these extraction schemes. H2SO4 extraction was found to be the most desirable. It also turned out to be more attractive than a once-through throwaway system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号