首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
环保管理   9篇
综合类   2篇
基础理论   7篇
污染及防治   19篇
评价与监测   3篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2001年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
Demand for green energy production is arising all over the world. A lot of emphasis is laid in making the buildings green. Even a small amount of energy savings made contribute to saving the environment. In this study, an idea is proposed and studied to extract power from the high head water in the pipelines of a building. A building of height 15 m is considered for this study. Water flowing in the pipe has sufficient energy to run a micro hydro turbine. The feasibility of producing electrical energy from the energy of pipe water is found. The motivation is to find the feasibility of generating power using a low-cost turbine. The experimental setup consists of micro turbine of 135 mm diameter coupled to a 12-V DC generator; LEDs and resistors are employed to validate the results. The theoretical calculations were presented using the fundamental equations of fluid mechanics. The theoretical results are validated using experimental and numerical results using CFD simulation. In addition, exergy analysis has been carried out to quantify the irreversibilities during the process in the system.  相似文献   
2.

The land disposal of waste and wastewater is a major source of N2O emission. This is due to the presence of high concentrations of nitrogen (N) and carbon in the waste. Abattoir wastewater contains 186 mg/L of N and 30.4 mg/L of P. The equivalent of 3 kg of abattoir wastewater-irrigated soil was sieved and taken in a 4-L plastic container. Abattoir wastewater was used for irrigating the plants at the rates of 50 and 100 % field capacity (FC). Four crop species were used with no crop serving as a control. Nitrous oxide emission was monitored using a closed chamber technique. The chamber was placed inside the plastic container, and N2O emission was measured for 7 days after the planting. A syringe and pre-evacuated vial were used for collecting the gas samples; a fresh and clean syringe was used each time to avoid cross-contamination. The collected gas samples were injected into a gas chromatography device immediately after each sampling to analyse the concentration of N2O from different treatments. The overall N2O emission was compared for all the crops under two different abattoir wastewater treatment rates (50 and 100 % FC). Under 100 % FC (wastewater irrigation), among the four species grown in the abattoir wastewater-irrigated soil, Medicago sativa (23 mg/pot), Sinapis alba (21 mg/pot), Zea mays (20 mg/pot) and Helianthus annuus (20 mg/pot) showed higher N2O emission compared to the 50 % treatments—M. sativa (17 mg/pot), S. alba (17 mg/pot), Z. mays (18 mg/pot) and H. annuus (18 mg/pot). Similarly, pots with plants have shown 15 % less emission than the pots without plants. Similar trends of N2O emission flux were observed between the irrigation period (4-week period) for 50 % FC and 100 % FC. Under the 100 % FC loading rate treatments, the highest N2O emission was in the following order: week 1 > week 4 > week 3 > week 2. On the other hand, under the 50 % FC loading rate treatments, the highest N2O emission was recorded in the first few weeks and in the following order: week 1 > week 2 > week 3 > week > 4. Since N2O is a greenhouse gas with high global warming potential, its emission from wastewater irrigation is likely to impact global climate change. Therefore, it is important to examine the effects of abattoir wastewater irrigation on soil for N2O emission potential.

  相似文献   
3.
Thespesia populnea oil was new source of biodiesel. Crude Thespesia populnea oil was used as feedstock for biodiesel production by alkali-catalyzed methanolysis. The reaction in the presence of NaOH as catalyst was carried out to investigate the optimum conditions and to study the effects of variables on the reaction. A methanol to oil ratio of 6:1, sodium methoxide catalyst concentration of 1.5%, mixing intensity of 250 rpm and reaction temperature of 60°C offered the best Thespesia populnea seed oil methyl esters (biodiesel) yield (92.6%). The methyl ester content under these optimum conditions was 92.6% w/w, and all of the measured properties of the Thespesia populnea biodiesel (TPME) met the international standards ASTM D 6751-02. The results reveal that all of the reaction variables in this study had positive effects on the reaction. The results of the present study indicated that TPME could be a potential alternative to petrodiesel  相似文献   
4.
Environmental Science and Pollution Research - Formation of oil-suspended sediment aggregates (OSAs) is believed to be one of the natural cleaning processes in the marine environment. In this...  相似文献   
5.
ABSTRACT

A new statistical model for predicting daily ground level fine scale particulate matter (PM2.5) concentrations at monitoring sites in the western United States was developed and tested operationally during the 2016 and 2017 wildfire seasons. The model is site-specific, using a multiple linear regression schema that relies on the previous day’s PM2.5 value, along with fire and smoke related variables from satellite observations. Fire variables include fire radiative power (FRP) and the National Fire Danger Rating System Energy Release Component index. Smoke variables, in addition to ground monitored PM2.5, include aerosol optical depth (AOD) and smoke plume perimeters from the National Oceanic and Atmospheric Administration’s Hazard Mapping System. The overall statistical model was inspired by a similar system developed for British Columbia (BC) by the BC Center for Disease Control, but it has been heavily modified and adapted to work in the United States. On average, our statistical model was able to explain 78% of the variance in daily ground level PM2.5. A novel method for implementation of this model as an operational forecast system was also developed and was tested and used during the 2016 and 2017 wildfire seasons. This method focused on producing a continuously-updating prediction that incorporated the latest information available throughout the day, including both updated remote sensing data and real-time PM2.5 observations. The diurnal pattern of performance of this model shows that even a few hours of data early in the morning can substantially improve model performance.

Implications: Wildfire smoke events produce significant air quality impacts across the western United States each year impacting millions. We present and evaluate a statistical model for making updating predictions of fine particulate (PM2.5) levels during smoke events. These predictions run hourly and are being used by smoke incident specialists assigned to wildfire operations, and may be of interest to public health officials, air quality regulators, and the public. Predictions based on this model will be available on the web for the 2019 western U.S. wildfire season this summer.  相似文献   
6.
This paper examines the development of aerobic granular sludge in the presence of a synthetic chelating agent, nitrilotriacetic acid (NTA), in sequencing batch reactors (SBR). The growth of seed sludge at 0.26 mM, 0.52 mM and 1.05 mM of NTA was found to be significantly lower as compared to that in the absence of NTA. Aerobic granulation was significantly enhanced in the three SBRs (R2, R3 and R4), which were fed with 0.26 mM, 0.52 mM and 1.05 mM of NTA as a co-substrate, in comparison to the acetate-alone fed SBR (R1). After 2 months of operation, the mean diameter of the biomass stabilized at 0.35 mm in R1 (acetate alone), as compared to 2.18 mm in R4 (1.05 mM NTA+acetate). NTA degradation was established in SBRs, with almost complete removal during the SBR cycle. Batch experiments also showed efficient degradation of NTA by the aerobic granules.  相似文献   
7.
Histopathological effects of sublethal doses of monocrotophos on the gills have been studied by exposing the fish for a period ranging from ten to twenty days. The extent of damage to gills was dependent on the dose and duration of exposure. Histopathological changes in the gills observed were characterized primarily by hemorrhage in the primary and secondary gill lemellae. Degeneration and necrosis of epithelial cells were very prominent. Distortion of the secondary lamellae was very prominent, beginning with disruption of epithelial cells from pillar cells.  相似文献   
8.
Visibility impairment from regional haze is a significant problem throughout the continental United States. A substantial portion of regional haze is produced by smoke from prescribed and wildland fires. Here we describe the integration of four simulation models, an array of GIS raster layers, and a set of algorithms for fire-danger calculations into a modeling framework for simulating regional-scale smoke dispersion. We focus on a representative fire season (2003) in the northwestern USA, on a 12 km domain, and track the simulated dispersion and concentration of PM2.5 over the course of the season. Simulated visibility reductions over national parks and wilderness areas are within the ranges of measured values at selected monitoring sites, although the magnitudes of peak events are underestimated because these include inputs other than fire. By linking the spatial and temporal patterns of haze-producing emissions to climatic variability, particularly synoptic weather patterns, and the stochastic nature of fire occurrence across the region, we can provide a robust method for estimating the quantity and distribution of fire-caused regional haze under climate-warming scenarios.  相似文献   
9.
We describe a new effort to enhance climate forecast relevance and usability through the development of a system for evaluating and displaying real‐time subseasonal to seasonal (S2S) climate forecasts on a watershed scale. Water managers may not use climate forecasts to their full potential due to perceived low skill, mismatched spatial and temporal resolutions, or lack of knowledge or tools to ingest data. Most forecasts are disseminated as large‐domain maps or gridded datasets and may be systematically biased relative to watershed climatologies. Forecasts presented on a watershed scale allow water managers to view forecasts for their specific basins, thereby increasing the usability and relevance of climate forecasts. This paper describes the formulation of S2S climate forecast products based on the Climate Forecast System version 2 (CFSv2) and the North American Multi‐Model Ensemble (NMME). Forecast products include bi‐weekly CFSv2 forecasts, and monthly and seasonal NMME forecasts. Precipitation and temperature forecasts are aggregated spatially to a United States Geological Survey (USGS) hydrologic unit code 4 (HUC‐4) watershed scale. Forecast verification reveals appreciable skill in the first two bi‐weekly periods (Weeks 1–2 and 2–3) from CFSv2, and usable skill in NMME Month 1 forecast with varying skills at longer lead times dependent on the season. Application of a bias‐correction technique (quantile mapping) eliminates forecast bias in the CFSv2 reforecasts, without adding significantly to correlation skill.  相似文献   
10.
Abstract: A stream mesocosm experiment was conducted to study the ecosystem‐wide effects of two replicated flow hydrograph treatments programmed in an attempt to compare a simulated predevelopment condition to the theoretical changes that new development brings, while accounting for engineering design criteria for urban stormwater management. Accordingly, the treatments (three replicates each) differed in base flow between events and in the rise to, fall from, and duration of peak flow during simulated storm hydrographs, which were triggered by real rain events occurring outside over a 96‐day period from summer to fall, 2005. Incident irradiance, initial substrate quality, and water quality were similar between treatments. Sampling was designed to study the interactions among the treatment flow dynamics, sediment transport processes, streambed nutrients, and biotic structure and function. What appeared most important to the overall structure and function of the mesocosm ecosystems beyond those changes resulting from natural seasonality were (1) the initial mass of fines that infiltrated into the gravel bed, which had a persistent effect on nitrogen biogeochemistry and (2) the subsequent fine sediment accumulation rate, which was unexpectedly similar between treatments, and affected the structure of the macroinvertebrate community equally as the experiment progressed. Invertebrate taxa preferring soft beds dominated when the gravel was comprised of 5‐10% fines. The dominant invertebrate algal grazer had vacated the channels when fines exceeded 15%, but this effect could not be separated from what appeared to be a seasonal decline in insect densities over the course of the study. Neither hydrograph treatment allowed for scour or other potential for flushing of fines. This demonstrated the potential importance of interactions between hydrology and fine sediment loading dynamics on stream ecosystems in the absence of flows that would act to mobilize gravel beds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号