首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   3篇
污染及防治   2篇
  2015年   1篇
  2010年   1篇
  2009年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.
Declines in salmon stocks and general watershed health in Washington State, USA, have led to an increase in stream restoration and enhancement projects initiated throughout the state. The increasing number of projects has also raised questions regarding the monitoring of these efforts. Project managers receiving hydraulic project approvals (HPAs) were surveyed to determine whether monitoring was taking place on their projects. About half the project managers surveyed reported the collection of baseline data and the use of biological, physical, chemical, or other water quality measures for their projects. Of those who reported collection of monitoring data, only 18% indicated that monitoring was required. Respondents were also asked to rank the importance of various project goals on a Likert scale. Project managers with projects focusing on “engineering” goals (e.g., roadbed stabilization) were less likely than other project managers to collect baseline monitoring data. Project managers with projects focusing on “restoration/ecological” or “fisheries” goals were more likely than other project managers to collect monitoring measures. Although monitoring appears to be taking place in slightly more than half of the projects surveyed, the nature of the data collected varies widely across projects, and in most cases the monitoring effort is voluntary. This suggests that project sponsors, funders, and managers must consider the issues involved in requiring appropriate monitoring, establishing standardized monitoring guidelines, the time frames in which to monitor, providing other incentives for conducting monitoring, and ensuring adequate funding for monitoring efforts.  相似文献   
2.
Relaxed eddy accumulation (REA) measurements of the total gaseous mercury (TGM) flux measurements were taken over a deciduous forest predominantly composed of Red Maple (Acer rubrum L.) during the growing season of 2004 and the second half of the growing season of 2005. The magnitudes of the flux estimates were in the range of published results from other micrometeorological mercury fluxes taken above a tall canopy and larger than estimates from flux chambers. The magnitude and direction of the flux were not static during the growing season. There was a significant trend (p < 0.001), from net deposition of TGM in early summer to net evasion in the late summer and early fall before complete senescence. A growing season atmosphere-canopy total mercury (TGM) compensation point during unstable daytime conditions was estimated at background ambient concentrations (1.41 ng m?3). The trend in the seasonal net TGM flux indicates that long term dry deposition monitoring is needed to accurately estimate mercury loading over a forest ecosystem.  相似文献   
3.
Stream restoration and enhancement projects: is anyone monitoring?   总被引:3,自引:2,他引:1  
Declines in salmon stocks and general watershed health in Washington State, USA, have led to an increase in stream restoration and enhancement projects initiated throughout the state. The increasing number of projects has also raised questions regarding the monitoring of these efforts. Project managers receiving hydraulic project approvals (HPAs) were surveyed to determine whether monitoring was taking place on their projects. About half the project managers surveyed reported the collection of baseline data and the use of biological, physical, chemical, or other water quality measures for their projects. Of those who reported collection of monitoring data, only 18% indicated that monitoring was required. Respondents were also asked to rank the importance of various project goals on a Likert scale. Project managers with projects focusing on “engineering” goals (e.g., roadbed stabilization) were less likely than other project managers to collect baseline monitoring data. Project managers with projects focusing on “restoration/ecological” or “fisheries” goals were more likely than other project managers to collect monitoring measures. Although monitoring appears to be taking place in slightly more than half of the projects surveyed, the nature of the data collected varies widely across projects, and in most cases the monitoring effort is voluntary. This suggests that project sponsors, funders, and managers must consider the issues involved in requiring appropriate monitoring, establishing standardized monitoring guidelines, the time frames in which to monitor, providing other incentives for conducting monitoring, and ensuring adequate funding for monitoring efforts.  相似文献   
4.
5.
The Community Multi-Scale Air Quality model (CMAQ) is used to assess regional air quality conditions for a wide range of chemical species throughout the United States (U.S.). CMAQ representation of the regional nitrogen budget is limited by its treatment of ammonia (NH3) soil emission from, and deposition to underlying surfaces as independent rather than tightly coupled processes, and by its reliance on soil emission estimates that do not respond to variable meteorology and ambient chemical conditions. The present study identifies an approach that addresses these limitations, lends itself to regional application, and will better position CMAQ to meet future assessment challenges. These goals were met through the integration of the resistance-based flux model of Nemitz et al. (2001) with elements of the United States Department of Agriculture EPIC (Environmental Policy Integrated Climate) model. Model integration centers on the estimation of ammonium and hydrogen ion concentrations in the soil required to estimate soil NH3 flux. The EPIC model was calibrated using data collected during an intensive 2007 field study in Lillington, North Carolina. A simplified process model based on the nitrification portion of EPIC was developed and evaluated. It was then combined with the Nemitz et al. (2001) model and measurements of near-surface NH3 concentrations to simulate soil NH3 flux at the field site. Finally, the integrated flux (emission) results were scaled upward and compared to recent national ammonia emission inventory estimates. The integrated model results are shown to be more temporally resolved (daily), while maintaining good agreement with established soil emission estimates at longer time-scales (monthly). Although results are presented for a single field study, the process-based nature of this approach and NEI comparison suggest that inclusion of this flux model in a regional application should produce useful assessment results if nationally consistent sources of driving soil and agricultural management information are identified.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号