首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
基础理论   1篇
  2012年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 60 毫秒
1
1.
As the scope and scale of New Zealand (NZ) dairy farming increases, farmers and the industry are being challenged by Government and the New Zealand public to address growing environmental concerns. Dairying has come under increasing scrutiny from local authorities tasked with sustainable resource management. Despite recent efforts of farmers and industry to improve resource use efficiency, there is increasing likelihood of further regulatory constraints on water use and nutrient management. This study uses available data on farm-gate nitrogen (N) surpluses and milk production from the Waikato, New Zealand's largest dairying region, together with a farm scale modeling exercise, to provide a perspective on the current situation compared to dairy farms in Europe. It also aims to provide relevant guidelines for N surpluses and efficiencies under NZ conditions. Waikato dairy farms compare favorably with farms in Europe in terms of N use efficiency expressed as L milk/kg farm-gate N surplus. Achievable and realistic good practice objectives for Waikato dairy farmers could be 15,000 L milk/ha (1200 kg milk fat plus protein/ha) with a farm-gate N surplus of 100 kg/ha giving an eco-efficiency (L milk/kg N surplus) of 150, and long-term average nitrate leaching losses of approximately 25-30 kg/ha/yr. This can be achieved by increasing the N conversion efficiency through lower replacement rates (16 versus 22%), lower stocked (< 3 cows/ha) high genetic merit cows (30 L milk/day at peak) milked for longer (277 versus 240 days), feeding effluent-irrigated, home-grown, low-protein supplements to cows on high-protein, grass-clover pastures to dilute N concentration in the diet, removing some of the urinary N from the paddocks during critical times by standing cows on a loafing pad for part of the day, and through lower N fertilizer rates (50-70 kg/ha/yr compared to the norm of 170-200 kg/ha/yr) and using a nitrification inhibitor and gibberellins to boost pasture growth and the former to reduce N leaching.  相似文献   
2.
The amount of carbon stored in savannas represents a significant uncertainty in global carbon budgets, primarily because fire causes actual biomass to differ from potential biomass. We analyzed the structural response of woody plants to long-term experimental burning in savannas. The experiment uses a randomized block design to examine fire exclusion and the season and frequency of burn in 192 7-ha experimental plots located in four different savanna ecosystems. Although previous studies would lead us to expect tree density to respond to the fire regime, our results, obtained from four different savanna ecosystems, suggest that the density of woody individuals was unresponsive to fire. The relative dominance of small trees was, however, highly responsive to fire regime. The observed shift in the structure of tree populations has potentially large impacts on the carbon balance. However, the response of tree biomass to fire of the different savannas studied were different, making it difficult to generalize about the extent to which fire can be used to manipulate carbon sequestration in savannas. This study provides evidence that savannas are demographically resilient to fire, but structurally responsive.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号