首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
安全科学   1篇
环保管理   3篇
污染及防治   1篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 93 毫秒
1
1.
Accidental releases of pollution can have severe environmental, societal, economic, and institutional consequences. This paper considers the use of risk mapping of accidental pollution events, and zonal prevention measures for alleviating the impact on large urban areas. An Environmental Pollution Accident Risk Mapping (EPARM) model is constructed according to a mapping index system supported by quantitative sub-models dedicated to evaluating the risk arising from different sources of potential accidental pollution. The EPARM approach consists of identifying suitable indexes, assessment of environmental risk at regional and national scales based on information on previous pollution accidents and the prevailing environmental and social conditions, and use of GIS to map the overall risk. A case study of pollution accidents in Minghang District, Shanghai, China is used to demonstrate the effectiveness of the model. The paper also proposes a systemic framework for accidental environmental pollution risk prevention, and detailed countermeasures for specific risk zones.  相似文献   
2.
Carrying Capacity of the Environment (CCE) provides a useful measure of the sustainable development of a region. Approaches that use integrated assessment instead of measurement can lead to misinterpretation of sustainable development because of confusion between Environmental Stress (ES) indexes and CCE indexes, and the selection of over-simple linear plus models. The present paper proposes a comprehensive measurement system for CCE which comprises models of natural resources capacity, environmental assimilative capacity, ecosystem services capacity, and society supporting capacity. The corresponding measurable indexes are designed to assess CCE using a carrying capacity surplus ratio model and a vector of surplus ratio of carrying capacity model. The former aims at direct comparison of ES and CCE based on the values of basic indexes, and the latter uses a Euclidean vector to assess CCE states. The measurement and assessment approaches are applicable to Strategic Environmental Assessment (SEA) and environmental planning and management. A case study is presented for Ningbo, China, whereby all the basic indexes of ECC are measured and the CCE states assessed for 2005 and 2010.  相似文献   
3.
Xu N  Ni J  Sun W  Borthwick AG 《Chemosphere》2007,69(9):1419-1427
Although the sorption mechanism of hydrophobic organic pollutants on soils or sediments has been widely studied, the effects of coexisting heavy metals are seldom reported, especially the role of dissolved organic carbon (DOC) in sorption interactions involving heavy metals. This paper investigates the sorption interactions of phthalate esters (diethyl phthalate, DEP, and di-n-butyl phthalate, DnBP) and copper on Yellow River sediment in the presence of DOC. The results indicate that the sorption hardly varies for DEP but increases up to 20% for DnBP as the copper concentration increases in a water-sediment system with extremely low concentration of DOC. The copper-induced sorption of DnBP could be due to its complexation with copper, as well as its hydrophobicity. In a water-sediment system with the addition of 6.34 mg l(-1) of commercial humic acid (HA), the sorption of DEP is decreased by up to 37%, and that of DnBP is enhanced by up to 41%, as copper is gradually added. This finding is also consistent with the results for a river water-sediment system containing 8.1 mg l(-1) natural DOC. The copper-influenced sorption of DEP and DnBP are found to be due to the binding of copper to DOC that leads to the configuration change of DOC and thus to its enhanced sorption to sediment. By using polarograph and fluorescence spectrograph techniques, the complexation competition among coexisting phthalates, copper and DOC is examined. The resulting data confirm the significant role of DOC in sorption interactions.  相似文献   
4.
An understanding of flood impact in terms of sustainability is vital for long-term disaster risk reduction. This paper utilizes two important concepts: conventional insurance related flood risk for short-term damage by specific flood events, and long-term flood impact on sustainability. The Insurance Related Flood Risk index, IRFR, is defined as the product of the Flood Hazard Index (FHI) and Vulnerability. The Long-term Flood Impact on Sustainability index, LFIS, is the ratio of the flood hazard index to the Sustainable Development Index (SDI). Using a rapid assessment approach, quantitative assessments of IRFR and LFIS are carried out for 2339 counties and cities in mainland China. Each index is graded from ‘very low’ to ‘very high’ according to the eigenvalue magnitude of cluster centroids. By combining grades of FHI and SDI, mainland China is then classified into four zones in order to identify regional variations in the potential linkage between flood hazard and sustainability. Zone I regions, where FHI is graded ‘very low’ or ‘low’ and SDI is ‘medium’ to ‘very high’, are mainly located in western China. Zone II regions, where FHI and SDI are ‘medium’ or ‘high’, occur in the rapidly developing areas of central and eastern China. Zone III regions, where FHI and SDI are ‘very low’ or ‘low’, correspond to the resource-based areas of western and north-central China. Zone IV regions, where FHI is ‘medium’ to ‘very high’ and SDI is ‘very low’ to ‘low’, occur in ecologically fragile areas of south-western China. The paper also examines the distributions of IRFR and LFIS throughout mainland China. Although 57% of the counties and cities have low IRFR values, 64% have high LFIS values. The modal values of LFIS are ordered as Zone I < Zone II ≈ Zone III < Zone IV; whereas the modal values of IRFR are ordered as Zone I < Zone III < Zone IV < Zone II. It is recommended that present flood risk policies be altered towards a more sustainable flood risk management strategy in areas where LFIS and IRFR vary significantly, with particular attention focused on Zone IV regions, which presently experience poverty and a deteriorating eco-system.  相似文献   
5.
This paper presents an approach for rapid assessment of sustainability for Mainland China based on a multilayer index system. Efficient assessment is conducted with the basic mapping units at county and city levels. After evaluating a comprehensive sustainable development index, SDI, for each unit, five rankings of sustainability are determined, and a zonation map produced. Regional characteristics and differences are interpreted through macro-analysis of the spatial variation in SDI. A sensitivity analysis is performed by which the weights of the sub-indices are altered by ±20%, and SDI re-evaluated; the resulting grades remain the same, thus confirming the robustness of the technique. Moreover, the accuracy of the proposed approach is indirectly validated by comparison with assessment results from an alternative systems analysis method. It is found that major conurbations such as Beijing have relatively high levels of sustainability, whereas provinces in central and western China require investment to improve their sustainability.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号