首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
基础理论   1篇
社会与环境   1篇
  2021年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
This study examined the economic potential of no-tillage versus conventional tillage to sequester soil carbon by using two rates of commercial N fertilizer or beef cattle manure for continuous corn (Zea mays L.) production. Yields, input rates, field operations, and prices from an experiment were used to simulate a distribution of net returns for eight production systems. Carbon release values from direct, embodied, and feedstock energies were estimated for each system, and were used with soil carbon sequestration rates from soil tests to determine the amount of net carbon sequestered by each system. The values of carbon credits that provide an incentive for managers to adopt production systems that sequester carbon at greater rates were derived. No-till systems had greater annual soil carbon gains, net carbon gains, and net returns than conventional tillage systems. Systems that used beef cattle manure had greater soil carbon gains and net carbon gains, but lower net returns, than systems that used commercial N fertilizer. Carbon credits would be needed to encourage the use of manure-fertilized cropping systems.  相似文献   
2.
Despite its successes, the U.S. Endangered Species Act (ESA) has proven challenging to implement due to funding limitations, workload backlog, and other problems. As threats to species survival intensify and as more species come under threat, the need for the ESA and similar conservation laws and policies in other countries to function efficiently has grown. Attempts by the U.S. Fish and Wildlife Service (USFWS) to streamline ESA decisions include multispecies recovery plans and habitat conservation plans. We address species status assessment (SSA), a USFWS process to inform ESA decisions from listing to recovery, within the context of multispecies and ecosystem planning. Although existing SSAs have a single-species focus, ecosystem-based research can efficiently inform multiple SSAs within a region and provide a foundation for transition to multispecies SSAs in the future. We considered at-risk grassland species and ecosystems within the southeastern United States, where a disproportionate number of rare and endemic species are associated with grasslands. To initiate our ecosystem-based approach, we used a combined literature-based and structured World Café workshop format to identify science needs for SSAs. Discussions concentrated on 5 categories of threats to grassland species and ecosystems, consistent with recommendations to make shared threats a focus of planning under the ESA: (1) habitat loss, fragmentation, and disruption of functional connectivity; (2) climate change; (3) altered disturbance regimes; (4) invasive species; and (5) localized impacts. For each threat, workshop participants identified science and information needs, including database availability, research priorities, and modeling and mapping needs. Grouping species by habitat and shared threats can make the SSA process and other planning processes for conservation of at-risk species worldwide more efficient and useful. We found a combination of literature review and structured discussion effective for identifying the scientific information and analysis needed to support the development of multiple SSAs. Article impact statement: Species status assessments can be improved by an ecosystem-based approach that groups imperiled species by shared habitats and threats.  相似文献   
3.
Analysis of climate trends in North Carolina (1949-1998)   总被引:2,自引:0,他引:2  
North Carolina has one of the most complex climates in the United States (U.S.). Analysis of the climate in this state is critical for agricultural and planning purposes. Climate patterns and trends in North Carolina are analyzed for the period 1949-1998. Precipitation, minimum temperature, and maximum temperature are analyzed on seasonal and annual time scales using data collected from the National Weather Service Cooperative Observer Network. Additionally, changes in patterns of occurrence of the last spring freeze and first fall freeze are investigated. Linear time series slopes are analyzed to investigate the spatial and temporal trends of climate variability in North Carolina. Spatial analysis of climate variability across North Carolina is performed using a geographic information system.While most trends are local in nature, there are general statewide patterns. Precipitation in North Carolina has increased over the past 50 years during the fall and winter seasons, but decreased during the summer. Temperatures during the last 10 years are warmer than average, but are not warmer than those experienced during the 1950s. The warm season has become longer, as measured by the dates of the last spring freeze and first fall freeze. Generally, the last 10 years were the wettest of the study period.These conclusions are consistent with earlier studies that show that the difference between the maximum and minimum temperatures is decreasing, possibly due to increased cloud cover and precipitation. Similarly, these results show that temperature patterns are in phase with the North Atlantic Oscillation and precipitation patterns appear to be correlated with the Pacific Decadal Oscillation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号