首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
环保管理   4篇
基础理论   2篇
污染及防治   3篇
  2014年   3篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  1984年   3篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Denitrification is a critical biogeochemical process that results in the conversion of nitrate to volatile products, and thus is a major route of nitrogen loss from terrestrial environments. Riparian buffers are an important management tool that is widely utilized to protect water from non-point source pollution. However, riparian buffers vary in their nitrate removal effectiveness, and thus there is a need for mechanistic studies to explore nitrate dynamics in buffer soils. The objectives of this study were to examine the influence of specific types of soluble organic matter on nitrate loss and nitrous oxide production rates, and to elucidate the relationships between these rates and the abundances of functional genes in a riparian buffer soil. Continuous-flow soil column experiments were performed to investigate the effect of three types of soluble organic matter (citric acid, alginic acid, and Suwannee River dissolved organic carbon) on rates of nitrate loss and nitrous oxide production. We found that nitrate loss rates increased as citric acid concentrations increased; however, rates of nitrate loss were weakly affected or not affected by the addition of the other types of organic matter. In all experiments, rates of nitrous oxide production mirrored nitrate loss rates. In addition, quantitative polymerase chain reaction (qPCR) was utilized to quantify the number of genes known to encode enzymes that catalyze nitrite reduction (i.e., nirS and nirK) in soil that was collected at the conclusion of column experiments. Nitrate loss and nitrous oxide production rates trended with copy numbers of both nir and 16s rDNA genes. The results suggest that low-molecular mass organic species are more effective at promoting nitrogen transformations than large biopolymers or humic substances, and also help to link genetic potential to chemical reactivity.  相似文献   
2.
A wetland mesocosm experiment was conducted in eastern North Carolina to determine if organic matter (OM) addition to soils used for in-stream constructed wetlands would increase NO3--N treatment. Not all soils are suitable for wetland substrate, so OM addition can provide a carbon and nutrient source to the wetland early in its development to enhance denitrification and biomass growth. Four batch studies, with initial NO3--N concentrations ranging from 30 to 120 mg L-1, were conducted in 2002 in 21 surface-flow wetland mesocosms. The results indicated that increasing the OM content of a Cape Fear loam soil from 50 g kg-1 (5% dry wt.) to 110 g kg-1 (11% dry wt.) enhanced NO3--N wetland treatment efficiency in spring and summer batch studies, but increases to 160 g kg-1 (16% dry wt.) OM did not. Wetlands constructed with dredged material from the USACE Eagle Island Confined Disposal Facility in Wilmington, NC, with initial OM of 120 g kg-1 (12% dry wt.), showed no improvement in NO3--N treatment efficiency when increased to 180 g kg-1 (18% dry wt.), but did show increased NO3--N treatment efficiency in all batch studies when increased to 220 g kg-1 (22% dry wt.). Increased OM addition and biosolids to the Cape Fear loam and dredged material blends significantly increased biomass growth in the second growing season when compared to no OM addition. Results of this research indicate that increased OM in the substrate will reduce the area required for in-stream constructed wetlands to treat drainage water in humid regions. It also serves as a demonstration of how dredged material can be used successfully in constructed wetlands, as an alternative to costly storage by the USACE.  相似文献   
3.
Harmful bugs affect food production,directly by the qualitativeor quantitative reduction of the harvests,or indirectly while servinglike vectors of several illnesses of the plants and human[1].Many chemical products are used by human for a long time inthe…  相似文献   
4.
Anthropogenic effects on marine ecosystems (e.g. hypoxia, warming) at and beyond continental margins are assumed to affect physiological and biochemical boundaries to species’ distributions, potentially leading to habitat contraction across depth. Whether or not shallow-water benthic invertebrates are capable of undergoing depth-related migrations in response to such perturbations remains largely unknown. The few studies available have focused solely on whether colonisation of deep waters may be ongoing and on the ability of shallow-water species to tolerate low temperatures and high hydrostatic pressures: two physical parameters, which are thought to limit the depth range of a species. Those studies did not consider the effects of acclimation to low temperature and, especially, acclimation to high hydrostatic pressure on pressure tolerance. We demonstrate that acclimation to both low temperature (5 °C) and to high hydrostatic pressure (10 MPa) increases the pressure tolerance within the shallow-water shrimp Palaemonetes varians. Previous studies have demonstrated the impressive temperature and pressure tolerance of this shallow-water shrimp. Here, we provide evidence that a shallow-water species may acclimate to low temperature and high pressure and show greater pressure tolerance, suggesting that shallow-water organisms may be able to rapidly—and potentially stepwise—acclimate to the low temperature and high pressure conditions typical of the deep sea. These findings are of importance for understanding phylogenetic development from shallow- to deep-water species and the processes behind past, present and future bathymetric range shifts in species.  相似文献   
5.
The riparian ecosystem management model (REMM) was field tested using five years (2005‐2009) of measured hydrologic and water quality data on a riparian buffer located in the Tar‐Pamlico River Basin, North Carolina. The buffer site received NO3‐N loading from an agricultural field that was fertilized with inorganic fertilizer. Field results showed the buffer reduced groundwater NO3‐N concentration moving to the stream over a five‐year period. REMM was calibrated hydrologically using daily field‐measured water table depths (WTDs), and with monthly NO3‐N concentrations in groundwater wells. Results showed simulated WTDs and NO3‐N concentrations in good agreement with measured values. The mean absolute error and Willmott's index of agreement for WTDs varied from 13‐45 cm and 0.72‐0.92, respectively, while the root mean square error and Willmott's index of agreement for NO3‐N concentrations ranged from 1.04‐5.92 mg/l and 0.1‐0.86, respectively, over the five‐year period. REMM predicted plant nitrogen (N) uptake and denitrification were within ranges reported in other riparian buffer field studies. The calibrated and validated REMM was used to simulate 33 years of buffer performance at the site. Results showed that on average the buffer reduced NO3‐N concentrations from 12 mg/l at the field edge to 0.7 mg/l at the stream edge over the simulation period, while the total N and NO3‐N load reductions from the field edge to the stream were 77 and 82%, respectively.  相似文献   
6.
MR Cull  AJ Dobbs 《Chemosphere》1984,13(9):1085-1089
The results of analyses for polychlorodibenzofuran (PCDF) content in two samples of polychlorobiphenyl (PCB) from used electrical transformers are presented and discussed. In neither sample was there evidence for enhanced PCDF concentrations even though one of them had been subjected to overheating while in service.  相似文献   
7.
MR Cull  AJ Dobbs  M Goudot  N Schultz 《Chemosphere》1984,13(10):1157-1165
Results of analyses of eight samples of technical pentachlorophenol conducted by three different analytical methods are presented and discussed.  相似文献   
8.
Riparian buffers have been used for many years as a best management practice to decrease the effects of nonpoint pollution from watersheds. The NC Conservation Reserve Enhancement Program (NC CREP) has established buffers to treat groundwater nitrate‐nitrogen (NO3?‐N) from agricultural sources in multiple river basins. A maturing 46 m wide riparian buffer enrolled in NC CREP was studied to determine its effectiveness in reducing groundwater NO3?‐N concentrations from a cattle pasture fertilized with poultry litter. Three monitoring blocks that included groundwater quality wells, water table wells, and soil redox probes, were established in the buffer. NO3?‐N concentrations decreased significantly across the buffer in all of the monitoring blocks with mean reductions of 76‐92%. Many biological processes, including denitrification and plant uptake, may have been responsible for the observed NO3?‐N reductions but could not be differentiated in this study. However, mean reductions in Cl? concentrations ranged from 48‐65% through the blocks, which indicated that dilution was an important factor in observed NO3?‐N reductions. These findings should be carefully considered for future buffer enrollments when assigning nitrogen removal credits.  相似文献   
9.
MR Cull  AJ Dobbs 《Chemosphere》1984,13(9):1091-1099
Wood samples treated with technical pentachlorophenol (PCP), technical sodium pentachlorophenoxide (NaPCP) and octachlorodibenzo-p-dioxin have been exposed outdoors for periods up to 212 years. Analysis of extracts from the samples show that photolytic reductive dechlorination of highly chlorinated dibenzo-p-dioxins to less chlorinated isomers occurs. However there is no discernible increase in polychlorodibenzo-p-dioxin concentrations in the technical PCP treated wood presumably because further photolytic reactions and volatilisation compete effectively with the photolytic formation. There is no evidence for formation of octachlorodibenzo-p-dioxin (OCDD) in technical PCP treated wood in this study, probably because photolytic destruction and volatilisation compete effectively with formation reactions when the initial OCDD concentration is relatively high.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号