首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   2篇
污染及防治   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
Minimizing atmospheric emissions of soil fumigants is critical for protecting human and environmental health. Covering the soil surface with a plastic tarp is a common approach to restrict fumigant emissions. The mass transfer of the fumigant vapors through the tarp is often the rate-limiting factor in fumigant emissions. An approach for standardizing measurements of film permeability is proposed that is based on determining the resistance (R) of films to diffusion of fumigants. Using this approach, values were determined for more than 200 film-chemical combinations under a range of temperature, relative humidity, and film handling conditions. Resistance to diffusion was specific for each fumigant/film combination, with the largest range of values observed for the fumigant chloropicrin. For each fumigant, decreased with increasing temperature. Changes in film permeability due to increases in temperature or field installation were generally less than a factor of five. For one film, values determined under conditions of very high relative humidity (approximately 100%) were at least 100 times lower than when humidity was very low (approximately 2%). This approach simplifies the selection of appropriate films for soil fumigation by providing rapid, reproducible, and precise measurements of their permeability to specific fumigants and application conditions.  相似文献   
2.
Soil concentrations and degradation rates of methyl isothio-cyanate (MITC), chloropicrin (CP), 1,3-dichloropropene (1,3-D), and dimethyl disulfide (DMDS) were determined under fumigant application scenarios representative of commercial raised bed, plastic mulched vegetable production systems. Five days after application, 1,3-D, MITC, and CP were detected at concentrations up to 3.52, 0.72, and 2.45 μg cm, respectively, in the soil atmosphere when applications were made in uniformly compacted soils with a water content >200% of field capacity and covered by a virtually impermeable or metalized film. By contrast, DMDS, MITC, and CP concentrations in the soil atmosphere were 0.81, 0.02, and 0.05 μg cm, respectively, 5 d after application in soil containing undecomposed plant residue, numerous large (>3 mm) clods, and water content below field capacity and covered by low-density polyethylene. Ranked in order of impact on the persistence of fumigants in soil were soil water content (moisture), soil tilth (the physical condition of soil as related to its fitness as a planting bed), the type of plastic film used to cover fumigated beds, and soil texture. Fumigants were readily detected 13 d after application when applied in uniformly compacted soils with water contents >200% of capacity and covered by a virtually impermeable or metalized film. By contrast, 1,3-D and MITC had dissipated 5 d after application in soils with numerous large (>3 mm) clods and water contents below field capacity that were covered by low-density polyethylene. Soil degradation of CP, DMDS, and MITC were primarily attributed to biological mechanisms, whereas degradation of 1,3-D was attributed principally to abiotic factors. This study demonstrates improved soil retention of agricultural fumigants in application scenarios representative of good agricultural practices.  相似文献   
3.
Atmospheric emission of methyl isothiocyanate (MITC), chloropicrin (CP), 1,3-dichloropropene (1,3-D), and dimethyl disulfide (DMDS) were measured in the field under fumigant application scenarios representative of raised bed–plastic-mulched crop production systems. For three fumigation sites located in Florida, cumulative emissions of 1,3-D, MITC and CP were less than 11%, 6% and 2%, respectively. For three fumigation sites in located in Georgia, cumulative emissions of MITC and CP were <13% and 12%, respectively while DMDS emissions varied from 37% to 95%. In the Florida sites, emission peak flux of CP occurred within the first 6 h after application. Peak emission of 1,3-D and MITC occurred between 100 and 144 h after application. In the Georgia sites where fumigated soil was covered by low density polyethylene (LDPE) plastic, emission peak flux of DMDS and MITC occurred between 12and 48 h after application. Key factors affecting atmospheric emissions were soil moisture, soil tilth and the resistance to fumigant diffusion of the plastic film used to cover soil following application. This study demonstrated reduced atmospheric emissions of agricultural fumigants under commercial production conditions when applied using good agricultural practices including soil water contents above field capacity, uniform soil tilth in the fumigation zone and the use of metalized or virtually impermeable films to further reduce fumigant emissions. The results of this study show a need for regional flux studies due to the various interactions of soil and climate with local agricultural land management practices.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号