首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
废物处理   1篇
环保管理   3篇
综合类   2篇
基础理论   5篇
污染及防治   2篇
  2023年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1979年   1篇
  1968年   1篇
排序方式: 共有13条查询结果,搜索用时 78 毫秒
1.
2.
The otoliths and lenses of the temperate damselfish Parma microlepis (Günther) (Pomacentridae) showed similar differences in trace-metal profile for selected locations along the coast of New South Wales, Australia. Otoliths and lenses displayed a differential ability to accumulate metals. Metal concentrations were ranked differently in the two structures (e.g. Sr > Ba > Pb > Rb > Hg in otoliths, and Hg > Sr ≃ Rb > Pb > Ba in lenses), and where similar metals were accumulated, they were accumulated at vastly different concentrations (e.g. Ba concentrations in otoliths are a thousand-fold greater than in lenses). Analyses of the otoliths and lenses of P. microlepis from locations close to Sydney and up to 100 km from the city were able to distinguish amongst these locations with respect to a number of metals, namely Ba, Mn and Hg. Multivariate analyses of otolith and lens data gave similar results among locations (agreement was obtained for 11 out of 15 pair-wise comparisons), and differences were attributable to the differential ability of the two structures to accumulate metals such as Mn and Hg. Trace-metal differences between locations were found to coincide with the proximity of sewage (including industrial waste) and petroleum storage facilities to the different locations. Received: 23 June 1997 / Accepted: 4 August 1997  相似文献   
3.
4.
Global land use patterns and increasing pressures on water resources demand creative urban stormwater management. Strategies encouraging infiltration can enhance groundwater recharge and water quality. Urban subsoils are often relatively impermeable, and the construction of many stormwater detention best management practices (D-BMPs) exacerbates this condition. Root paths can act as conduits for water, but this function has not been demonstrated for stormwater BMPs where standing water and dense subsoils create a unique environment. We examined whether tree roots can penetrate compacted subsoils and increase infiltration rates in the context of a novel infiltration BMP (I-BMP). Black oak (Quercus velutina Lam.) and red maple (Acer rubrum L.) trees, and an unplanted control, were installed in cylindrical planting sleeves surrounded by clay loam soil at two compaction levels (bulk density = 1.3 or 1.6 g cm(-3)) in irrigated containers. Roots of both species penetrated the more compacted soil, increasing infiltration rates by an average of 153%. Similarly, green ash (Fraxinus pennsylvanica Marsh.) trees were grown in CUSoil (Amereq Corp., New York) separated from compacted clay loam subsoil (1.6 g cm(-3)) by a geotextile. A drain hole at mid depth in the CUSoil layer mimicked the overflow drain in a stormwater I-BMP thus allowing water to pool above the subsoil. Roots penetrated the geotextile and subsoil and increased average infiltration rate 27-fold compared to unplanted controls. Although high water tables may limit tree rooting depth, some species may be effective tools for increasing water infiltration and enhancing groundwater recharge in this and other I-BMPs (e.g., raingardens and bioswales).  相似文献   
5.
ABSTRACT: A visual selection technique can be utilized to locate potential well field sites prior to on-site testing. The technique is based upon an understanding of the regional hydrology and an appreciation for development goals such as the identification of high-yield and low-impact locations. Although the uniqueness of Pasco, Pinellas, and Hillsborough Counties in Western Florida has been incorporated into the current application, the methodology, with modifications, is transferable to other geographic regions. Overlays of each criterion used in site selection are combined to form a regional composite showing favorable site locations and further serve a useful communications role as visual aids during public presentation. Implications of direct and indirect cost savings to the public are obtained when the methodology is applied to the location of municipal well fields.  相似文献   
6.
7.
The use of soil washing to remove petroleum hydrocarbon contamination from the soil matrix is becoming more widely used. When viewed as a volume reduction tool, this technology shows some promise. However, ongoing research and treatability studies indicate that without further treatment, even larger-sized soil fractions (sands and cobbles) may retain hydrocarbon contamination at levels that require further cleaning prior to permanent disposal or reuse. The perception has been that by removing the sand from the soil matrix, thus achieving a 30 percent to 60 percent volume reduction, expensive post-washing treatment or approved disposal of the finer materials (silts and clays) would be cost-effective. There exists evidence to the contrary, however. Hydrocarbon retention after soil washing may be influenced by a number of factors unrelated to particle size. Soil characteristics that may play a role include soil humic acids, metal oxide coatings, geologic origin of the soil particles, and clay type. In this article the authors describe a laboratory study designed to evaluate the “cleanability” of two soils.  相似文献   
8.
Environmental monitoring is increasingly shifting toward a set of systems that describe changes in real time. In ecology specifically, a series of challenges have prevented the rollout of real-time monitoring for features such as biodiversity change or ecosystem service provision. Conservation culturomics, a field concerned with interactions between people and nature, is well placed to demonstrate how monitoring might move toward a network of real-time platforms, given its existence exclusively in the digital realm. We examined a set of considerations associated with the development of real-time monitoring platforms for conservation culturomics and introduce a near real-time platform for the Species Awareness Index, a global index of changing biodiversity awareness derived from the rate of change in page views for species on Wikipedia. This platform will update automatically each month, operating in near real time ( https://joemillard.shinyapps.io/Real_time_SAI/ ). There are plans to make the underlying data queryable via an application programing interface independent of the platform. The real-time Species Awareness Index will represent the first real-time and entirely automated conservation culturomic platform and one of the first real-time platforms in the discipline of ecology. Real-time monitoring for culturomics can provide insight into human–nature interactions as they play out in the physical realm and provide a framework for the development of real-time monitoring in ecology. Real-time monitoring metrics can be processed on private virtual machines and hosted on publicly available cloud services. Conservation now needs an online, real-time observatory that can evolve with the structure of the web.  相似文献   
9.
S. G. Dove 《Marine Biology》1999,134(4):653-663
The eye lenses of Parma microlepis from the rocky barrens of Sydney (New South Wales, Australia) were found to contain Ba, Hg, Rb, and Sr at concentrations above the quantitative detection limits of solution-based inductively-coupled plasma–mass spectrometry (ICP–MS). Lenses were separated into the hard central nucleus and the softer surrounding cortex. Nuclei contained lower (equal for Ba) concentrations of these metals. Biochemical analysis of the protein composition of these lenses revealed differences in the ratio of γ-crystallin to β-crystallin in the lens nucleus and cortex. These changes were shown to be attributable both to protein degradation and changes in protein synthesis as fish age. Such changes may lead to the loss of sequestered metals from older cell layers, or change the affinity of new layers for particular trace metals. Differential binding affinities of these crystallins may, therefore, partially account for trace-metal differences observed in the lens nucleus and cortex. Received: 13 November 1998 / Accepted: 23 April 1999  相似文献   
10.
Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号