首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   2篇
污染及防治   2篇
社会与环境   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Phytoextraction field experiments were conducted on soil contaminated with 0.39 to 8.7 Bq/g of 137Cs to determine the capacity of five plant species to accumulate 137Cs and the effects of three soil treatments on uptake. The plants tested were redroot pigweed (Amaranthus retroflexus L. var. aureus); a mixture of redroot pigweed and spreading pigweed (A. graecizans L.); purple amaranth (A. cruteus L.) x Powell's amaranth (A. powellii S. Watson), referred to here as the amaranth hybrid; Indian mustard [Brassica juncea (L.) Czern.]; and cabbage (Brassica oleracea L. var. capitata). For control plants, the concentration ratios (CR) of 137Cs were greatest for redroot pigweed and the amaranth hybrid, with average CR values of 1.0 +/- 0.24 and 0.95 +/- 0.14, respectively. The lowest value was for Indian mustard at 0.36 +/- 0.10. The soil treatments included (i) application of NH4NO3 solution to the soil after plants had matured, (ii) addition of composted manure to increase organic matter content of the soil, (iii) combination of the manure and ammonium solution treatments, and (iv) controls. The ammonium solution gave little overall increase in accumulation of 137Cs. The use of composted manure also had little influence, but the combination of the composted manure with application of ammonium solutions had a distinctly negative effect on plant uptake of 137Cs. On average the fraction of 137Cs taken up from the soil was reduced by 57.4 +/- 1.2% compared with controls. This was the result of release of competing ions, primarily Ca, from the manure and was observed across all five plant species tested. The application of ammonium solution took place in the last two weeks before harvest. The reduction of plant 137Cs content, by addition of the ammonium solution, as it interacted with the manure, indicates that substantial quantities 137Cs can be released from the shoots of plants as a result of sudden changes in soil solution chemistry.  相似文献   
2.
Possible evidence for transport of an iron cyanide complex by plants   总被引:1,自引:0,他引:1  
Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to 15N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots (delta 15N per thousand =1000-1500) and shoots (delta 15N per thousand =500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater 15N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results.  相似文献   
3.
Site 36 at the Crab Orchard National Wildlife Refuge includes a Cd-contaminated soil dominated by deer tongue grass (Panicum clandestinum L.). Analysis of deer tongue grass from this site indicated that biomass and leaf surface area were reduced and that there was a linear relationship between both plant bioavailable soil Cd and total soil Zn and tissue Cd concentration. The Cd concentrations in stems and leaves were also used to estimate the dietary Cd exposures that might be experienced by prairie voles (Microtus ochrogaster) and pine voles (M. pinetorum) consuming deer tongue grass. Renal and hepatic Cd burdens predicted from exclusive consumption of deer tongue grass would be comparable to those that have resulted in chronic toxicity in rodents. The results suggest that for the contaminated soil at Site 36, conditions could allow for the accumulation of Cd in deer tongue grass to concentrations that may pose an ecological risk.  相似文献   
4.
This case study was conducted to evaluate the use of reclaimed lake sediment as a growth media for vegetable production and to estimate whether accumulation of micronutrients and heavy metals in the vegetables would impact human nutrition or health, respectively. Five plant species, bean (Phaseolus vulgaris L.), broccoli (Brassica oleracea L.), carrot (Daucus carota L.), pepper (Capsicum annum L.), and tomato (Lycopersicon esculentum L.), were grown in pots containing either reclaimed sediment from the Illinois River or a reference soil. Edible and vegetative tissues from the plants were analyzed for 19 elements, including As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Tomato and pepper grown in sediment showed significantly greater biomass and yield as compared to plants from the reference soil. Elemental analysis of the tissues revealed that Zn and Mo were the only elements that were significantly greater in sediment-grown plants on a consistent basis. While significant, Zn concentrations were no more than 3-fold higher than those in plants from the reference soil. The same trend was observed for Mo, except for bean tissues, which showed a 10-fold greater concentration in sediment-grown plants. The projected dietary intake of Cu, Mo, and Zn from consumption of sediment-grown vegetable tissues was significantly higher than for soil-grown plants, although the contribution to the recommended dietary allowances (RDAs) for these elements was substantial only for Mo. Intake of sediment-grown beans would have provided 500% of the dietary Mo RDA. While this is below the lowest observable adverse effect level (LOAEL) value for this element, there is no evidence to indicate that there would be a nutritional or therapeutic benefit from the consumption of bean containing this level of Mo. The dietary exposures to Cd and Pb would have been below the pertinent limits for all age and gender groups with the exception of the cumulative dietary Cd exposure to the 1-3 year age group. The results from this study suggest that this reclaimed sediment can be utilized for the production of vegetables intended for human consumption. The results from this case study also suggest that sediment material with similar physicochemical characteristics and elemental concentrations that fall within the pertinent regulatory guidelines should also be a suitable and safe medium for vegetable production.  相似文献   
5.
A field test was conducted to determine the ability of three plant species to extract 137Cs and 90Sr from contaminated soil. Redroot pigweed (Amaranthus retroflexus L.), Indian mustard [Brassica juncea (L.) Czern.], and tepary bean (Phaseolus acutifolius A. Gray) were planted in a series of spatially randomized cells in soil that was contaminated in the 1950s and 1960s. We examined the potential for phytoextraction of 90Sr and 137Cs by these three species. Concentration ratios (CR) for 137Cs for redroot pigweed, Indian mustard, and tepary bean were 2.58, 0.46, and 0.17, respectively. For 90Sr they were substantially higher: 6.5, 8.2, and 15.2, respectively. The greatest accumulation of both radionuclides was obtained with redroot pigweed, even though its CR for 90Sr was the lowest, because of its relatively large biomass. There was a linear relationship between the 137Cs concentration in plants and its concentration in soil only for redroot pigweed. Uptake of 90Sr exhibits no relationship to 90Sr concentrations in the soil. Estimates of time required for removal of 50% of the two contaminants, assuming two crops of redroot pigweed per year, are 7 yr for 90Sr and 18 yr for 137Cs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号