首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
废物处理   1篇
评价与监测   3篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The use of organic wastes in agriculture may increase the production of crops by incorporating organic matter and nutrients into the soil, and by improving its physical characteristics; however, this use may cause environmental problems such as the leaching of certain ions. The objective of this study was to establish possible nitrogen and phosphorus leaching under real field conditions in Phaeozem soils. The experimental work was performed in a corn (Zea mays L.) field where three plots were conditioned with inorganic fertilizer, three plots with 4.5 Mg ha?1 of biosolids on dry basis, and three plots with the same amount of composted biosolids. The quality of biosolids and composted biosolids complied with the Mexican Official Standards. Soil water samples were collected with suction cups during two agricultural cycles and were analysed. Soil samples were also taken and analysed.The N–NO3 concentrations in soil water fluctuated between 0.9 and 98 mg L?1 in the composted biosolid treatment, between 0.7 and 64 mg L?1 in the biosolid treatment, and between 1 and 61 mg L?1 in the inorganic fertilizer treatment. The maximum concentration of N–NO2 and N–NH3 in soil water was 1.02 and 2.65 mg L?1, respectively. The greatest percentage of nitrogen leached is produced when inorganic fertilizer is used (37.4% and 24.0% N leached in the first and second years, respectively), followed by composted biosolids (17.1% and 13.5% N leached in the first and second years, respectively) and last by biosolids (11% for both years). This difference could be related to the form in which nitrogen is present in the fertilizers, while commercial fertilizer is as inorganic nitrogen, organic wastes are basically presented as organic nitrogen. The maximum PO43- concentration in soil water was 1.9 mg L?1 in the composted biosolid treatment, 1.7 mg L?1 in the biosolid treatment and 0.9 mg L?1 in the inorganic fertilizer treatment. The estimated percentage of leached phosphorus was less than 1% for all treatments. The minimum leaching that occurred seemed to be due to a sorption–precipitation process.  相似文献   
2.
The impact of intensive aquifer exploitation has been observed in numerous places around the world. Mexico is a representative example of this problem. In 2010, 101 out of the 653 aquifers recognized in the country, showed negative social, economic, and environmental effects related to intensive exploitation. The environmental effects include, among others, groundwater level decline, subsidence, attenuation, and drying up of springs, decreased river flow, and deterioration of water quality. This study aimed at determining the hydrochemical changes produced by intensive aquifer exploitation and highlighting water quality modifications, taking as example the Valle de Toluca, Salamanca, and San Luis Potosi aquifers in Mexico's highlands. There, elements such as fluoride, arsenic, iron, and manganese have been detected, resulting from the introduction of older groundwater with longer residence times and distinctive chemical composition (regional flows). High concentrations of other elements such as chloride, sulfate, nitrate, and vanadium, as well as pathogens, all related to anthropogenic pollution sources (wastewater infiltration, irrigation return flow, and atmospheric pollutants, among others) were also observed. Some of these elements (nitrate, fluoride, arsenic, iron, and manganese) have shown concentrations above Mexican and World Health Organization drinking water standards.  相似文献   
3.
The Toluca Valley is located on the high plains of Mexico, where there are significant industrial zones and large populations. Water needs are almost exclusively met by groundwater, which has brought about intense exploitation of the aquifer and indication of some contamination. The present study investigates the effect of urbanization, related to industrialization of the region, on groundwater in the central portion of the Toluca Valley aquifer—a zone with high population density and where the largest industrial park is located. A general decline in the groundwater level has been found over the years, at a rate of as much as 2.5 m/year. The appearance of a large drawdown cone was identified, indicating changes in the direction of groundwater flow. Also identified was the presence of several ground fissures, the location of which coincided with the drawdown cone. In hydrochemical terms, the water type is sodium-magnesium bicarbonate and this characteristic has not changed over time, although it has been possible to detect the presence of larger quantities of sulfates (up to 117 mg/L) and nitrates (up to 47 mg/L) in recent years, likely associated with contamination from industrial and urban wastewater. Factor analysis made it possible to identify ions that would characterize natural processes involving the acquisition of salts (HCO3 ?, Na+, Mg2+, and Si), as well as anthropic activities (SO4 2?, NO3 ?, Cl?, Ca2+, and K+).  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号