首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   2篇
  2013年   1篇
  2001年   1篇
排序方式: 共有2条查询结果,搜索用时 78 毫秒
1
1.
Riparian zones within the Appalachian Valley and Ridge physiographic province are often characterized by localized variability in soil moisture and organic carbon content, as well as variability in the distribution of soils formed from alluvial and colluvial processes. These sources of variability may significantly influence denitrification rates. This investigation studied the attenuation of nitrate (NO3- -N) as wastewater effluent flowed through the shallow ground water of a forested headwater riparian zone within the Appalachian Valley and Ridge physiographic province. Ground water flow and NO3- -N measurements indicated that NO3- -N discharged to the riparian zone preferentially flowed through the A and B horizons of depressional wetlands located in relic meander scars, with NO3- -N decreasing from > 12 to < 0.5 mg L(-1). Denitrification enzyme activity (DEA) attributable to riparian zone location, soil horizon, and NO3- -N amendments was also determined. Mean DEA in saturated soils attained values as high as 210 microg N kg(-1) h(-1), and was significantly higher than in unsaturated soils, regardless of horizon (p < 0.001). Denitrification enzyme activity in the shallow A horizon of wetland soils was significantly higher (p < 0.001) than in deeper soils. Significant stimulation of DEA (p = 0.027) by N03- -N amendments occurred only in the meander scar soils receiving low NO3- -N (<3.6 mg L(-1)) concentrations. Significant denitrification of high NO3- -N ground water can occur in riparian wetland soils, but DEA is dependent upon localized differences in the degree of soil saturation and organic carbon content.  相似文献   
2.
Abstract: In order to improve modeling accuracy and general understanding of lotic biochemical oxygen demand (BOD), this study characterized river metabolism with the current Georgia Environmental Protection Division method for the middle and lower Savannah River basin (MLSRB) and several alternative methods developed with 120‐day, long‐term biochemical oxygen demand (LTBOD) data from the MLSRB. The data were a subset of a larger two‐year LTBOD study to characterize and understand BOD in the MLSRB, located approximately between Augusta, Georgia, and Savannah, Georgia, along the border of Georgia and South Carolina. The LTBOD data included total oxygen loss and nitrogen speciation for separately quantifying nitrification. Results support the following insights and opportunities for modeling methods: (1) it is important to modeling accuracy that residuals be checked for even dispersion to avoid areas of over‐ and underprediction; (2) modeling with bounded, yet unfixed, rates is a sufficiently simple alternative to fixed‐rate modeling that can eliminate the need for manual adjustments and provide additional system understanding to inform regulation; (3) if fixed rates modeling is desired, model quality for this system might be improved through revising the current low rate (along with the associated f‐ratio updates) from 0.02/day rate to 0.006/day and potentially adding a new rate at 1.0/day in some cases; and (4) the current 57/43 ratio of slow/fast BOD is reasonable based on the 52/45/3 slow/fast/faster BOD proportions of this study.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号