首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
环保管理   1篇
基础理论   4篇
污染及防治   6篇
评价与监测   1篇
  2014年   1篇
  2009年   4篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Abstract: The transport of reactive contaminants in the subsurface is generally affected by a large number of nonlinear and often interactive physical, chemical, and biological processes. Simulating these processes requires a comprehensive reactive transport code that couples the physical processes of water flow and advective-dispersive transport with a range of biogeochemical processes. Two recently developed coupled geochemical models that are both based on the HYDRUS-1D software package for variably saturated flow and transport are summarized in this paper. One model resulted from coupling HYDRUS-1D with the UNSATCHEM module. While restricted to major ion chemistry, this program enables quantitative predictions of such problems as analyzing the effects of salinity on plant growth and the amount of water and amendments required to reclaim salt-affected soil profiles. The second model, HPI, resulted from coupling HYDRUS-1D with the PHREEQC biogeochemical code. The latter program accounts for a wide range of instantaneous or kinetic chemical and biological reactions, including complexation, cation exchange, surface complexation, precipitation dissolution and/or redox reactions. The versatility of HP1 is illustrated in this paper by means of two examples: the leaching of toxic trace elements and the transport of the explosive TNT and its degradation products.  相似文献   
2.
3.
An integral model for the plane buoyant jet dynamics resulting from the interaction of multiple buoyant jet effluxes spaced along a diffuser line is considered as an extension of the round jet formulation that was proposed in Part I. The receiving fluid is given by an unbounded ambient environment with uniform density or stable density stratification and under stagnant or steady sheared current conditions. Applications for this situation are primarily for submerged multiport diffusers for discharges of liquid effluents into ambient water bodies, but also for multiple cooling tower plumes and building air-conditioning. The CorJet model formulation describes the conservation of mass, momentum, buoyancy and scalar quantities in the turbulent jet flow in the plane jet geometry. It employs an entrainment closure approach that distinguishes between the separate contributions of transverse shear and of internal instability mechanisms, and contains a quadratic law turbulent pressure force mechanism. But the model formulation also includes several significant three-dimensional effects that distinguish actual diffuser installations in the water environment. These relate to local merging processes from the individual multiple jets, to overall finite length effects affecting the plume geometry, and to bottom proximity effects given by a “leakage factor” that measures the combined affect of port height and spacing in allowing the ambient flow to pass through the diffuser line in order to provide sufficient entrainment flow for the mixing downstream from the diffuser. The model is validated in several stages: First, comparison with experimental data for the asymptotic, self-similar stages of plane buoyant jet flows, i.e. the plane pure jet, the pure plume, the pure wake, the advected line puff, and the advected line thermal, support the choice of the turbulent closure coefficients contained in the entrainment formulation. Second, comparison with data for many types of non-equilibrium flows with a plane geometry support the proposed functional form of the entrainment relationship, and also the role of the pressure force in the jet deflection dynamics. Third, the observed behavior of the merging process from different types of multiport diffuser discharges in both stagnant and flowing ambient conditions and with stratification appears well predicted with the CorJet formulation. Fourth, a number of spatial limits of applicability, relating to terminal layer formation in stratification or transition to passive diffusion in a turbulent ambient shear flow, have been proposed. In sum, the CorJet integral model appears to provide a mechanistically sound, accurate and reliable representation of complex buoyant jet mixing processes, provided the condition of an unbounded receiving fluid is satisfied.  相似文献   
4.
The mechanics of buoyant jet flows issuing with a general three-dimensional geometry into an unbounded ambient environment with uniform density or stable density stratification and under stagnant or steady sheared current conditions is investigated. An integral model is formulated for the conservation of mass, momentum, buoyancy and scalar quantities in the turbulent jet flow. The model employs an entrainment closure approach that distinguishes between the separate contributions of transverse shear (leading to jet, plume, or wake internal flow dynamics) and of azimuthal shear mechanisms (leading to advected momentum puff or thermal flow dynamics), respectively. Furthermore, it contains a quadratic law turbulent drag force mechanism as suggested by a number of recent detailed experimental investigations on the dynamics of transverse jets into crossflow. The model is validated in several stages: First, comparison with basic experimental data for the five asymptotic, self-similar stages of buoyant jet flows, i.e., the pure jet, the pure plume, the pure wake, the advected line puff, and the advected line thermal, support the choice and magnitude of the turbulent closure coefficients contained in the entrainment formulation. Second, comparison with many types of non-equilibrium flows support the proposed transition function within the entrainment relationship, and also the role of the drag force in the jet deflection dynamics. Third, a number of spatial limits of applicability have been proposed beyond which the integral model necessarily becomes invalid due to its parabolic formulation. These conditions, often related to the breakdown of the boundary layer nature of the flow, describe features such as terminal layer formation in stratification, upstream penetration in jets opposing a current, or transition to passive diffusion in a turbulent ambient shear flow. Based on all these comparisons, that include parameters such as trajectories, centerline velocities, concentrations and dilutions, the model appears to provide an accurate and reliable representation of buoyant jet physics under highly general flow conditions.  相似文献   
5.
Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br-), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h(-1) for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br- transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils during variably saturated water flow.  相似文献   
6.
7.
Honnedaga Lake in the Adirondack region of New York has sustained a heritage brook trout population despite decades of atmospheric acid deposition. Detrimental impacts from acid deposition were observed from 1920 to 1960 with the sequential loss of acid-sensitive fishes, leaving only brook trout extant in the lake. Open-lake trap net catches of brook trout declined for two decades into the late 1970s, when brook trout were considered extirpated from the lake but persisted in tributary refuges. Amendments to the Clean Air Act in 1990 mandated reductions in sulfate and nitrogen oxide emissions. By 2000, brook trout had re-colonized the lake coincident with reductions in surface-water sulfate, nitrate, and inorganic monomeric aluminum. No changes have been observed in surface-water acid-neutralizing capacity (ANC) or calcium concentration. Observed increases in chlorophyll a and decreases in water clarity reflect an increase in phytoplankton abundance. The zooplankton community exhibits low species richness, with a scarcity of acid-sensitive Daphnia and dominance by acid-tolerant copepods. Trap net surveys indicate that relative abundance of adult brook trout population has significantly increased since the 1970s. Brook trout are absent in 65 % of tributaries that are chronically acidified with ANC of <0 μeq/L and toxic aluminum levels (>2 μmol/L). Given the current conditions, a slow recovery of chemistry and biota is expected in Honnedaga Lake and its tributaries. We are exploring the potential to accelerate the recovery of brook trout abundance in Honnedaga Lake through lime applications to chronically and episodically acidified tributaries.  相似文献   
8.
9.
The hydrodynamics of super- and sub-critical shallow uniform free-surface flows are assessed using laboratory experiments aimed at identifying and quantifying flow structure at scales larger than the flow depth. In particular, we provide information on probability distributions of horizontal velocity components, their correlation functions, velocity spectra, and structure functions for the near-water-surface flow region. The data suggest that for the high Froude number flows the structure of the near-surface layer resembles that of two-dimensional turbulence with an inverse energy cascade. In contrast, although large-scale velocity fluctuations were also present in low Froude number flow its behaviour was different, with a direct energy cascade. Based on our results and some published data we suggest a physical explanation for the observed behaviours. The experiments support Jirka’s [Jirka GH (2001) J Hydraul Res 39(6):567–573] hypothesis that secondary instabilities of the base flow may generate large-scale two-dimensional eddies, even in the absence of transverse gradients in the time-averaged flow properties.  相似文献   
10.
Biopurification systems treating pesticide contaminated water are very efficient, however they operate as a black box. Processes inside the system are not yet characterized. To optimize the performance, knowledge of degradation and retention processes needs to be generated. Therefore, displacement experiments were carried out for four pesticides (isoproturon, bentazone, metalaxyl, linuron) in columns containing different organic mixtures. Bromide, isoproturon and bentazone breakthrough curves (BTCs) were well described using the convection-dispersion equation (CDE) and a first-order degradation kinetic approach. Metalaxyl and linuron BTCs were well described using the CDE model expanded with Monod-type kinetics. Freundlich sorption, first-order degradation and Monod kinetics coefficients were fitted to the BTCs. Fitted values of the distribution coefficient Kf,column were much lower than those determined from batch experiments. Based on mobility, pesticides were ranked as: bentazone > metalaxyl - isoproturon > linuron. Based on degradability, pesticides were ranked as: linuron > metalaxyl - isoproturon > bentazone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号