首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   2篇
基础理论   1篇
  2015年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Fertilizer phosphorus (P) and grazing-related factors can influence runoff P concentrations from grazed pastures. To investigate these effects, we monitored the concentrations of P in surface runoff from grazed dairy pasture plots (50 x 25 m) treated with four fertilizer P rates (0, 20, 40, and 80 kg ha(-1) yr(-1)) for 3.5 yr at Camden, New South Wales. Total P concentrations in runoff were high (0.86-11.13 mg L(-1)) even from the control plot (average 1.94 mg L(-1)). Phosphorus fertilizer significantly (P < 0.001) increased runoff P concentrations (average runoff P concentrations from the P(20), P(40), and P(80) treatments were 2.78, 3.32, and 5.57 mg L(-1), respectively). However, the magnitude of the effect of P fertilizer varied between runoff events (P < 0.01). Further analysis revealed the combined effects on runoff P concentration of P rate, P rate x number of applications (P < 0.001), P rate x time since fertilizer (P < 0.001), dung P (P < 0.001), time since grazing (P < 0.05), and pasture biomass (P < 0.001). A conceptual model of the sources of P in runoff comprising three components is proposed to explain the mobilization of P in runoff and to identify strategies to reduce runoff P concentrations. Our data suggest that the principal strategy for minimizing runoff P concentrations from grazed dairy pastures should be the maintenance of soil P at or near the agronomic optimum by the use of appropriate rates of P fertilizer.  相似文献   
2.
Sampling of recruitment-associated variables of Perna perna was done approximately monthly for 14 months at intertidal locations 500 m apart, nested within sites 25 km apart. Paired with intertidal locations were nearshore locations, 600 m to sea. Sampling assessed spawning, densities of larvae in the water column and densities of late plantigrades and juveniles on the shore. Major events in each variable were synchronous over larger scales (10s of kilometres) while subsidiary events were synchronised at smaller scales, varying within sites (100s of metres) or even within locations (metres). This suggests that the processes driving major events operated over large scales while processes operating at much more local scales drove less intense, more localised events. A major spawning event occurred at all locations in May–June 1998. Weaker spawning events occurred at different times in different locations. Larvae were found on 80% of sampling occasions, densities peaking in January–March 1998 and 1999 at all locations. Plantigrades and juveniles showed less clear patterns, with considerable residual variation. There was no sign of strong coupling among variables with few significant direct or cross correlations. The major sources of variability shifted from time to space as one progressed from spawning, to plantigrade density to juvenile density. For spawning, time was the most important source (58%) of heterogeneity and space accounted for little (8%) of the total variance. For larvae and late plantigrades, time was still the most important source of variability (41% and 33%, respectively), but space was a much more substantial component. For juveniles, small-scale (residual) spatial variability dominated total variability (75%). This strongly suggests the importance of hydrography and its effects on variation in delivery of larvae to the intertidal from offshore. These findings also indicate greater spatial heterogeneity as recruits age, reflecting small-scale variations in larval delivery and the increasing importance of post-settlement mortality.Communicated by G.F. Humphrey, Sydney  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号