首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
环保管理   8篇
综合类   1篇
污染及防治   1篇
  2011年   2篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 218 毫秒
1
1.
We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al(2)(SO(4))(3)) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min.  相似文献   
2.
Environmental concerns about phosphorus (P) losses from animal agriculture have led to interest in dietary strategies to reduce the concentration and solubility of P in manures and litters. To address the effects of dietary available phosphorus (AvP), calcium (Ca), and phytase on P excretion in broilers, 18 dietary treatments were applied in a randomized complete block design to each of four replicate pens of 28 broilers from 18 to 42 d of age. Treatments consisted of three levels of AvP (3.5, 3.0, and 2.5 g kg(-1)) combined with three levels of Ca (8.0, 6.9, and 5.7 g kg(-1)) and two levels of phytase (0 and 600 phytase units [FTU]). Phytase was added at the expense of 1.0 g kg(-1) P from dicalcium phosphate. Fresh litter was collected from pens when the broilers were 41 d of age and analyzed for total P, soluble P, and phytate P as well as P composition by (31)P nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the inclusion of phytase at the expense of inorganic P or reductions in AvP decreased litter total P by 28 to 43%. Litter water-soluble P (WSP) decreased by up to 73% with an increasing dietary Ca/AvP ratio, irrespective of phytase addition. The ratio of WSP/total P in litter decreased as the dietary Ca/AvP ratio increased and was greater in the phytase-amended diets. This study indicated that while feeding reduced AvP diets with phytase decreased litter total P, the ratio of Ca/AvP in the diet was primarily responsible for effects on WSP. This is important from an environmental perspective as the amount of WSP in litter could be related to potential for off-site P losses following land application of litter.  相似文献   
3.
Using 31-phosphorus nuclear magnetic resonance spectroscopy ((31)P-NMR) to characterize phosphorus (P) in animal manures and litter has become a popular technique in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with (31)P-NMR compared to other accepted methods such as high performance liquid chromatography (HPLC). To evaluate the use of (31)P-NMR to quantify myo-inositol hexakisphosphate (phytate) in ileal digesta, manure, and litter from broilers, we compared results obtained from both (31)P-NMR and a more traditional HPLC method. The quantification of phytate in all samples was very consistent between the two methods, with linear regressions having slopes ranging from 0.94 to 1.07 and r(2) values of 0.84 to 0.98. We compared the concentration of total monoester P determined with (31)P-NMR with the total inositol P content determined with HPLC and found a strong linear relationship between the two measurements having slopes ranging from 0.91 to 1.08 and r(2) values of 0.73 to 0.95. This suggests that (31)P-NMR is a very reliable method for quantifying P compounds in manure/litter samples.  相似文献   
4.
Phosphorus losses in runoff from application of manures and biosolids to agricultural land are implicated in the degradation of water quality in the Chesapeake and Delaware Inland Bays. We conducted an incubation study to determine the relative P solubility and bioavailability, referred to as P source coefficients (PSCs), for organic P sources, which are typically land-applied in the Mid-Atlantic USA. Nine organic and one inorganic (KH2PO4) P amendments were applied to an Evesboro loamy sand (mesic, coated Typic Quartzipsamments) at a rate of 60 mg P kg(-1) and incubated for 8 wk with subsamples analyzed at 2 and 8 wk. There was an increase in Mehlich-3 P (M3-P), water-soluble P (WS-P), iron-oxide strip extractable P (FeO-P), and Mehlich-3 P saturation ratio (M3-PSR) with P additions, which varied by P source. The trend of relative extractable WS-P, FeO-P, and M3-P generally followed the pattern: inorganic P > liquid and deep pit manures > manures and biosolids treated with metal salts or composted. We found significant differences in the availability of P from varying organic P sources. The use of PSCs may be beneficial when determining the risk of P losses from land application of manures and other organic P sources and could be used in risk assessments such as a P site index. These PSCs may also be useful for determining P application rates when organic P sources are applied to P deficient soils for use as a fertilizer source.  相似文献   
5.
In 1998, the Maryland legislature mandated nitrogen (N) and phosphorus (P) nutrient management planning for nearly all of Maryland's commercial agricultural operations. State regulations required that a phosphorus indexing tool (P Index) be used for determining the potential for P losses from agricultural land, even though a reliable P Index did not exist. The development and assessment of the P Index as a dependable tool for the evaluation of the potential for P losses was constrained by a very aggressive implementation schedule imposed by state regulations. The Maryland Phosphorus Site Index (PSI) was evaluated on 646 state-representative field sites beginning in the spring of 1999 and continuing through the spring of 2000. Of the representative fields, 69% were determined to have a "low" P loss rating, 19% were in the "medium" P loss rating category, 8% were determined to be a "high" risk for P loss, and 4% rated as "very high" P loss potential. Fifty-five percent of the fields evaluated had soil test phosphorus (STP) levels less than the 75 mg kg-1 Mehlich-1 P environmental threshold established by state regulations. The frequency distribution of PSI performance was evaluated for several subcategories of the statewide data set. The Maryland PSI will be deployed for use in constructing farm nutrient management plans well before its predictive capabilities can be objectively and rigorously validated. Field validation is essential. In the meantime, the Maryland PSI should function adequately as a tool to assist in the prioritization of field P loss risk potential.  相似文献   
6.
7.
The correlation of runoff phosphorus (P) with water-extractable phosphorus (WEP) in land-applied manures and biosolids has spurred wide use of WEP as a water quality indicator. Land managers, planners, and researchers need a common WEP protocol to consistently use WEP in nutrient management. Our objectives were to (i) identify a common WEP protocol with sufficient accuracy and precision to be adopted by commercial testing laboratories and (ii) confirm that the common protocol is a reliable index of runoff P. Ten laboratories across North America evaluated alternative protocols with an array of manure and biosolids samples. A single laboratory analyzed all samples and conducted a separate runoff study with the manures and biosolids. Extraction ratio (solution:solids) was the most important factor affecting WEP, with WEP increasing from 10:1 to 100:1 and increasing from 100:1 to 200:1. When WEP was measured by a single laboratory, correlations with runoff P from packed soil boxes amended with manure and biosolids ranged from 0.79 to 0.92 across all protocol combinations (extraction ratio, filtration method, and P determination method). Correlations with P in runoff were slightly lower but significant when WEP was measured by the 10 labs (r=0.56-0.86). Based on laboratory repeatability and water quality evaluation criteria, we recommend the following common protocol: 100:1 extraction ratio; 1-h shaking and centrifuge 10 min at 1500xg (filter with Whatman #1 paper if necessary); and determining P by inductively coupled plasma-atomic emission spectrometry or colorimetric methods.  相似文献   
8.
Concentrated animal feeding operations emit trace gases such as ammonia (NH?), methane (CH?), carbon dioxide (CO?), and nitrous oxide (N?O). The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. The objective of this study was to determine the emission rates of NH?, CH?, CO?, and N?O from three source areas (open lots, wastewater pond, compost) on a commercial dairy located in southern Idaho. Gas concentrations and wind statistics were measured each month and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open lots were 0.13 kg NH?, 0.49 kg CH?, 28.1 kg CO?, and 0.01 kg N?O. Average emissions from the wastewater pond (g m(-2) d(-1)) were 2.0 g NH?, 103 g CH?, 637 g CO?, and 0.49 g N?O. Average emissions from the compost facility (g m(-2) d(-1)) were 1.6 g NH?, 13.5 g CH?, 516 g CO?, and 0.90 g N?O. The combined emissions of NH?, CH?, CO?, and N?O from the lots, wastewater pond and compost averaged 0.15, 1.4, 30.0, and 0.02 kg cow(-1) d(-1), respectively. The open lot areas generated the greatest emissions of NH?, CO?, and N?O, contributing 78, 80, and 57%, respectively, to total farm emissions. Methane emissions were greatest from the lots in the spring (74% of total), after which the wastewater pond became the largest source of emissions (55% of total) for the remainder of the year. Data from this study can be used to develop trace gas emissions factors from open-lot dairies in southern Idaho and potentially other open-lot production systems in similar climatic regions.  相似文献   
9.
Endotoxins are derived from gram-negative bacteria and are a potent inducer of inflammatory reactions in the respiratory tract when inhaled. To assess daily fluctuations of airborne endotoxin and their potential for transport from dairies, endotoxin concentrations were monitored over an 8-h period at upwind (background) and downwind (5 m from edge of dairy) locations on three separate days at two dairies. The dairies consisted of an open-lot or an open-freestall production system, both of which were stocked with 10,000 milking cows. Upwind concentrations were stable throughout the sampling period, averaging between 1.2 and 36.8 endotoxin units (EU) m(-3), whereas downwind concentration averages ranged from 179 to 989 EU(-3). Downwind endotoxin concentrations increased with wind speed, animal activity, and lot management practices, resulting in concentrations up to 136-fold hi gher than upwind concentrations. An area-source model was used to predict downwind ground-level endotoxin concentrations at distances up to 2000 m from the production facilities. Predicted concentrations decreased with distance and reached background levels within 500 to 2000 m, depending on the source emision rate and meteorological conditions.  相似文献   
10.
Including low-phytic-acid grains in swine diets can reduce P concentrations in manure, but the influence on manure P composition is relatively unknown. To address this we analyzed manure from swine fed one of four barley (Hordeum vulgare L.) varieties. The barley types consisted of wild-type barley (CDC bold, normal barley diet) and three low-phytic-acid mutant barleys that contained similar amounts of total P but less phytic acid. The phytic acid concentrations in the mutant barleys were reduced by 32% (M422), 59% (M635), and 97% (M955) compared with that in the wild-type barley, respectively. Phosphorus concentrations were approximately one-third less in manures from animals fed low-phytic-acid barleys compared with those fed the wild-type variety. Phytic acid constituted up to 55% of the P in feed, but only trace concentrations were detected in NaOH-EDTA extracts of all manures by solution (31)P nuclear magnetic resonance (NMR) spectroscopy. Phosphate was the major P fraction in the manures (86-94% extracted P), with small concentrations of pyrophosphate and simple phosphate monoesters also present. The latter originated mainly from the hydrolysis of phospholipids during extraction and analysis. These results suggest that phytic acid is hydrolyzed in swine, possibly in the hind gut by intestinal microflora before being excreted in feces, even though the animals have little phytase activity in the gut and derive little nutritional benefit from phytate P. We conclude that feeding low-phytic-acid grains reduces total manure P concentrations and the manure P is no more soluble than P generated from normal barley diets.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号