首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term 'common-garden' experiment to disentangle the effects of species' wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.  相似文献   
3.
Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term ‘common-garden’ experiment to disentangle the effects of species’ wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.  相似文献   
4.
Ellers J  Rog S  Braam C  Berg MP 《Ecology》2011,92(8):1605-1615
Increases in biodiversity can result from an increase in species richness, as well as from a higher genetic diversity within species. Intraspecific genetic diversity, measured as the number of genotypes, can enhance plant primary productivity and have cascading effects at higher trophic levels, such as an increase in herbivore and predator richness. The positive effects of genotypic mixtures are not only determined by additive effects, but also by interactions among genotypes, such as facilitation or inhibition. However, so far there has been no effort to predict the extent of such effects. In this study, we address the question of whether the magnitude of the effect of genotype number on population performance can be explained by the extent of dissimilarity in key traits among genotypes in a mixture. We examine the relative contribution of genotype number and phenotypic dissimilarity among genotypes to population performance of the soil arthropod, Orchesella cincta. Nearly homogeneous genotypes were created from inbred isofemale lines. Phenotypic dissimilarity among genotypes was assessed in terms of three life-history traits that are associated with population growth rate, i.e., egg size, egg development time, and juvenile growth rate. A microcosm experiment with genotype mixtures consisting of one, two, four, and eight genotypes, showed that genotypic richness strongly increased population size and biomass production and was associated with greater net diversity effects. Most importantly, there was a positive log-linear relationship between phenotypic dissimilarity in a mixture and the net diversity effects for juvenile population size and total biomass. In other words, the degree of phenotypic dissimilarity among genotypes determined the magnitude of the genotypic richness effect, although this relationship leveled off at higher values of phenotypic dissimilarity. Although the exact mechanisms responsible for these effects are currently unknown, similar advantages of trait dissimilarity have been found among species. Hence, to better understand population performance, genotype number and phenotypic dissimilarity should be considered collectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号