首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   4篇
  2011年   2篇
  2004年   1篇
  2002年   1篇
排序方式: 共有4条查询结果,搜索用时 8 毫秒
1
1.
Phosphorus in runoff from fields where poultry litter is surface-applied is an environmental concern. We investigated the effect of adding phytase and reducing supplemental P in poultry diets and composting poultry manures, with and without Fe and Al amendments, on P in manures, composts, and runoff. We used four diets: normal (no phytase) with 0.4% supplemental P, normal + phytase, phytase + 0.3% P, and phytase + 0.2% P. Adding phytase and decreasing supplemental P in diets reduced total P but increased water-extractable P in manure. Compared with manures, composting reduced both total P, due to dilution of manure with woodchips and straw, and water-extractable P, but beyond a dilution effect so that the ratio of water-extractable P to total P was less in compost than manure. Adding Fe and Al during composting did not consistently change total P or water-extractable P. Manures and composts were surface-applied to soil boxes at a rate of 50 kg total P ha(-1) and subjected to simulated rainfall, with runoff collected for 30 min. For manures, phytase and decreased P in diets had no significant effect on total P or molybdate-reactive P loads (kg ha(-1)) in runoff. Composting reduced total P and molybdate-reactive P loads in runoff, and adding Fe and Al to compost reduced total P but not molybdate-reactive P loads in runoff. Molybdate-reactive P in runoff (mg box(-1)) was well correlated to water-extractable P applied to boxes (mg box(-1)) in manures and composts. Therefore, the final environmental impact of dietary phytase will depend on the management of poultry diets, manure, and farm-scale P balances.  相似文献   
2.
Poultry litter provides a rich nutrient source for crops, but the usual practice of surface-applying litter can degrade water quality by allowing nutrients to be transported from fields in surface runoff while much of the ammonia (NH3)-N escapes into the atmosphere. Our goal was to improve on conventional titter application methods to decrease associated nutrient losses to air and water while increasing soil productivity. We developed and tested a knifing technique to directly apply dry poultry litter beneath the surface of pastures. Results showed that subsurface litter application decreased NH3-N volatilization and nutrient losses in runoff more than 90% (compared with surface-applied litter) to levels statistically as low as those from control (no litter) plots. Given this success, two advanced tractor-drawn prototypes were developed to subsurface apply poultry litter in field research. The two prototypes have been tested in pasture and no-till experiments and are both effective in improving nutrient-use efficiency compared with surface-applied litter, increasing crop yields (possibly by retaining more nitrogen in the soil), and decreasing nutrient losses, often to near background (control plot) levels. A paired-watershed study showed that cumulative phosphorus losses in runoff from continuously grazed perennial pastures were decreased by 55% over a 3-yr period if the annual poultry litter applications were subsurface applied rather than surface broadcast. Results highlight opportunities and challenges for commercial adoption of subsurface poultry litter application in pasture and no-till systems.  相似文献   
3.
Injection of cattle and swine slurries can provide soil incorporation in no-till and perennial forage production. Injection is expected to substantially reduce N loss due to ammonia (NH3) volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This paper reviews our current knowledge of the impacts of subsurface application of cattle and swine slurries on the N balance and outlines areas where a greater understanding is needed. Several publications have shown that liquid manure injection using disk openers, chisels, or tines can be expected to Sreduce NH, emissions by at least 40%, and often by 90% or more, relative to broadcast application. However, the limited number of studies that have also measured denitrification losses have shown that increased denitrification with subsurface application can offset as much as half of the N conserved by reducing NH3 emissions. Because the greenhouse gas nitrous oxide (N2O) is one product of denitrification, the possible increases in N2O emission with injection require further consideration. Subsurface manure application generally does not appear to increase leaching potential when manure is applied at recommended rates. Plant utilization of conserved N was shown in only a portion of the published studies, indicating that further work is needed to better synchronize manure N availability and crop uptake. At this time in the United States, the economic and environmental benefits from reducing losses of N as NH3 are expected to outweigh potential liability from increases in denitrification with subsurface manure application. To fully evaluate the trade-offs among manure application methods, a detailed environmental and agricultural economic assessment is needed to estimate the true costs of potential increases in NO2O emissions with manure injection.  相似文献   
4.
Ammonia (NH3) volatilization commonly causes a substantial loss of crop-available N from surface-applied cattle slurry. Field studies were conducted with small wind tunnels to assess the effect of management factors on NH3 volatilization. Two studies compared NH3 volatilization from grass sward and bare soil. The average total NH3 loss was 1.5 times greater from slurry applied to grass sward. Two studies examined the effect of slurry dry matter (DM) content on NH3 loss under hot, summer conditions in Maryland, USA. Slurry DM contents were between 54 and 134 g kg(-1). Dry matter content did not affect total NH3 loss, but did influence the time course of NH3 loss. Higher DM content slurries had relatively higher rates of NH3 volatilization during the first 12 to 24 h, but lower rates thereafter. Under the hot conditions, the higher DM content slurries appeared to dry and crust more rapidly causing smaller rates of NH3 volatilization after 12 to 24 h, which offset the earlier positive effects of DM content on NH3 volatilization. Three studies compared immediate incorporation with different tillage implements. Total NH3 loss from unincorporated slurry was 45% of applied slurry NH4+-N, while losses following immediate incorporation with a moldboard plow, tandem-disk harrow, or chisel plow were, respectively, 0 to 3, 2 to 8, and 8 to 12%. These ground cover and DM content data can be used to improve predictions of NH3 loss under specific farming conditions. The immediate incorporation data demonstrate management practices that can reduce NH3 volatilization, which can improve slurry N utilization in crop-forage production.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号