首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   6篇
  2016年   1篇
  2010年   1篇
  2008年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
This study was conducted to investigate the effects of temperature and time on the mechanisms of phosphorus removal in swine manure during aeration. Removal of soluble orthophosphates significantly increased with aeration time and temperature. Successive significant ortho-P removals were observed between days one and nine but no significant additional removals were recorded thereafter. Removals were significantly higher at temperatures of 20 and 25 degrees C than at temperatures of 5, 10, and 15 degrees C and ranged between 22.9 to 31.0%. Insoluble inorganic phosphorus also changed significantly with aeration time and temperature and with a similar trend as soluble orthophosphates. The pH of the manure explained 92 and 87% of the content of insoluble inorganic phosphorus at lower temperatures (5, 10, 15 degrees C) and at higher temperatures (20, and 25 degrees C), respectively. Organic phosphorus and aerobes growth patterns were similar to that of soluble orthophosphates removal. The rapid growth of aerobes was most probably the principal factor behind a rapid soluble ortho-P removal above 15 degrees C. The contribution of inorganic phosphates to the removal of soluble orthophosphates was approximately 61% while that due to organic P was approximately 35%. Precipitation was found to be the principal mechanism governing removal of soluble ortho-P in swine manure during aeration treatments.  相似文献   
2.
About 80% of dairy cattle N intake is excreted in urine and feces. Urinary-N is about 75% urea, whereas fecal-N is mostly organic. Urinary-N (urea) can only be volatilized when it is hydrolyzed to ammonia (NH3) in a process catalyzed by urease, which is predominantly found in feces. Minimizing contact between urine and feces may be an effective approach to reducing urea hydrolysis and subsequent NH3 emissions. Previous studies have reported 5 to 99% NH3 emissions mitigation within barns from separation of feces and urine. The objective ofthis study was to compare NH3 emissions mitigation via separation of urine and feces in postcollection storage to a conventional scrape manure handling method where urine and feces are comingled. Laboratory scale studies were conducted to evaluate NH3 emissions from simulated postcollection storag of three waste streams: (i) idealistically separated feces and urine (no contact between urine and feces), (ii) realistically separated urine and feces (limited contact of urine and feces), and (iii) conventionally scraped manure (control). From the results of these studies, NH3 losses ranking in descending order was as follows: aggregate of realistically separated waste streams (3375.9 +/- 54.8 mg), aggregate of idealistically separated urine and feces (3047.0 +/- 738.0 mg), and scrape manure (2034.0 +/- 106.5 mg), respectively. Therefore, on the basis of these results, the extra effort of separating the waste streams would not enhance mitigation of NH3 losses from postcollection storage of the separated waste streams compared to the conventional scrape manure collection system.  相似文献   
3.
Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes.  相似文献   
4.
Previous studies on solids/liquid (S-L) separation for odor control from swine manure indicated that the practice might not technically be feasible because of the complexity of removing the fine particles, which are usually the major source of the odor problems. This study coupled S-L separation by sedimentation with an aeration treatment to quickly break down the fine as well as dissolved solids. Results showed that S-L separation of manure prior to aeration, at the same level of aeration, took only 1.5 days compared to 3 days needed for the control, to bring down volatile fatty acids (VFAs) to the "threshold of unacceptable level". In addition, it took 2.3 and 5 aeration-days for VFAs to reach the "acceptable level" for the separated liquid manure and the control, respectively. Results also showed that within the three weeks of post-aeration storage, the VFAs in the separated liquid manure consistently stayed 13.5 folds below the acceptable level. In the unseparated manure, the VFAs gradually increased upwards from 2.2 folds below acceptable level achieved at the end of aeration treatment, to 1.38 folds below the acceptable level at the end of the third week of storage and looked poised to definitely rise above the acceptable level in a matter of days. A strong relationship (R=0.99) between pH and the VFAs in the manure suggested that; degradation of VFAs rendered manure more basic as shown by the increase in pH. After only three days of aeration, the oxidation reduction potential (ORP) in the separated liquid manure stabilized at a much higher level of -15 mV, while the ORP in unseparated manure stabilized at a much lower level of -200 mV. The S-L separation treatment thus significantly improves the oxygen transfer efficiency, which in turn significantly reduces the aeration power needed to maintain adequate ORP if prolonged aeration is desired.  相似文献   
5.
6.
The temperature effect on total anaerobic and aerobic bacterial growth in pig slurry was studied using low level batch aeration treatments. Five bioreactors were built using Plexiglas tubes to perform five temperature treatments (5 degrees C, 10 degrees C, 15 degrees C, 20 degrees C, and 25 degrees C). An airflow rate of 0.129 L/min/L manure was used to aerate manure contained in all reactors. Data showed that temperature had a profound impact on the aerobic counts in pig slurry during the aeration process. When the temperature increased from 15 degrees C to 25 degrees C, the average oxidation-reduction potential decreased from +40 mV to -60 mV, accompanied by a 75% reduction of aerobic bacteria in the manure. At 25 degrees C, the anaerobic counts were consistently higher than aerobic counts for most of days. A quadratic relationship was observed between the aerobic counts and the oxidation-reduction potential with a correlation coefficient of 0.8374. To reduce odor generation potential, the oxidation-reduction potential in the manure should be maintained at +35 mV or higher.  相似文献   
7.
Two low level aeration schemes (intermittent vs. continuous) were investigated on a laboratory scale, in conjunction with swine manure pH adjustment using sodium hydroxide (1.0 M), for manure phosphorus (P) removal. According to the data, an 80% reduction in soluble P was observed when the manure pH was increased to 8. Both intermittent and continuous aeration treatments could raise manure pH above 8 with an airflow rate of 1 L/minute in a period of 15 days. A drastic increase in pH (about 1 unit) was observed for both aeration schemes within the first day of test, resulting in a 76% reduction in soluble P concentration in the liquid. It appeared that there is no difference in terms of P removal between the two aeration programs, suggesting that the intermittent aeration be preferred to save energy while still achieving the same level of P removal.  相似文献   
8.
The hydrometer method to measure manure specific gravity and subsequently relate it to manure nutrient contents was examined in this study. It was found that this method might be improved in estimation accuracy if only manure from a single growth stage of pigs was used (e.g., nursery pig manure used here). The total solids (TS) content of the test manure was well correlated with the total nitrogen (TN) and total phosphorus (TP) concentrations in the manure, with highly significant correlation coefficients of 0.9944 and 0.9873, respectively. Also observed were good linear correlations between the TN and TP contents and the manure specific gravity (correlation coefficients: 0.9836 and 0.9843, respectively). These correlations were much better than those reported by past researchers, in which lumped data for pigs at different growing stages were used. It may therefore be inferred that developing different linear equations for pigs at different ages should improve the accuracy in manure nutrient estimation using a hydrometer. Also, the error of using the hydrometer method to estimate manure TN and TP was found to increase, from +/- 10% to +/- 50%, with the decrease in TN (from 700 ppm to 100 ppm) and TP (from 130 ppm to 30 ppm) concentrations in the manure. The estimation errors for TN and TP may be larger than 50% if the total solids content is below 0.5%. In addition, the rapid settling of solids has long been considered characteristic of swine manure; however, in this study, the solids settling property appeared to be quite poor for nursery pig manure in that no conspicuous settling occurred after the manure was left statically for 5 hours. This information has not been reported elsewhere in the literature and may need further research to verify.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号