首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   2篇
污染及防治   2篇
  2007年   2篇
  2006年   2篇
排序方式: 共有4条查询结果,搜索用时 250 毫秒
1
1.
Laboratory-scale experiments were conducted in order to investigate the effect of ozone as pre-aerobic treatment and post-aerobic treatment for the treatment of the distillery wastewater. The degradation of the pollutants present in distillery spent wash was carried out by ozonation, aerobic biological degradation processes alone and by using the combinations of these two processes to investigate the synergism between the two modes of wastewater treatment and with the aim of reducing the overall treatment costs. Pollutant removal efficiency was followed by means of global parameters directly related to the concentration of organic compounds in those effluents: chemical oxygen demand (COD) and the color removal efficiency in terms of absorbance of the sample at 254 nm. Ozone was found to be effective in bringing down the COD (up to 27%) during the pretreatment step itself. In the combined process, pretreatment of the effluent led to enhanced rates of subsequent biological oxidation step, almost 2.5 times increase in the initial oxidation rate has been observed. Post-aerobic treatment with ozone led to further removal of COD along with the complete discoloration of the effluent. The integrated process (ozone-aerobic oxidation-ozone) achieved approximately 79% COD reduction along with discoloration of the effluent sample as compared to 34.9% COD reduction for non-ozonated sample, over a similar treatment period.  相似文献   
2.
Irradiation with ultrasound (US) and use of an enzyme (E) as pretreatment techniques were carried out to treat a complex effluent (distillery wastewater). These two techniques have been used alone as well as in combination and the efficacy of these techniques was tested by subjecting the effluent to subsequent aerobic biological oxidation (AO). When used alone, US exposure for 30 min and 2 h yielded the best COD reduction during the aerobic oxidation step (US+AO). For the enzyme when used alone, a pH value of 4.8 (corresponding to the optimum pH of the enzyme), a dose of 50 U and a pretreatment time of 24 h yielded better COD removal efficiency as compared to untreated effluent (aerobic oxidation alone). When used in combination, ultrasound followed by enzymatic pretreatment (US+E+AO) yielded the best COD removal efficiencies during aerobic oxidation as compared to the other combinations tested for the treatment of the distillery wastewater. A 4-fold increase in the initial oxidation rate was observed over the untreated batch for the integrated technique (US+E+AO). On the basis of the variation in the values of the biokinetic parameters it can be concluded that the type of pretreatment scheme affects the subsequent rate of the aerobic oxidation significantly.  相似文献   
3.
A combined treatment technique consisting of enzymatic hydrolysis, followed by aerobic biological oxidation was investigated for the treatment of alcohol distillery spent wash. The enzyme cellulase was used for the pretreatment step with an intention of transforming the complex and large pollutant molecules into simpler biologically assimilable smaller molecules. Batch experiments were performed in order to analyze the influence of various parameters like pretreatment time, enzyme concentration and pH during the pretreatment step on the subsequent aerobic oxidation kinetics. The rate of aerobic oxidation was enhanced by 2.3 fold for the pretreated sample as compared to the untreated sample when the pH during the pretreatment step was maintained at a value of 4.8. Similarly, a two fold increase in the aerobic oxidation rate was found when the effluent was pretreated with the enzyme, without any pH control (i.e. effluent pH of 3,8). The study indicated that the enzymatic pretreatment of the effluent could be one of the successful pretreatments which can lead to enhancement of the rate of the subsequent aerobic oxidation.  相似文献   
4.
The present work is aimed at increasing the overall efficiency of the treatment process of distillery spent wash using a combination of different treatment techniques. Initially the effluent samples were subjected to Thermal Pretreatment (TPT-DW) and anaerobic treatment (ANA-DW). Advanced oxidation techniques, viz., Ultrasound (US) and Ozone were then used for further COD reduction followed by the conventional aerobic oxidation using mixed microbial consortium. Pretreatment of TPT-DW with US and Ozone (as stand alone techniques) enhanced the subsequent aerobic oxidation rate. For US treated sample, a maximum of 13% COD reduction was attained at the end of 48 h of aerobic oxidation, while for the ozone treated effluent a maximum of 45.6% COD reduction was obtained as compared to mere 1.8% COD reduction for the control (TPT-DW directly subjected to aerobic oxidation) indicating a 25 times increase in the rate of aerobic biodegradation of ozonated sample. Anaerobically treated effluent sample (ANA-DW) could be successfully treated aerobically. In this case, however, the use of advanced oxidation techniques did not result in any synergistic effects. The rate of the aerobic oxidation was slightly higher for the control (ANA-DW directly subjected to aerobic oxidation) as compared to the sample pretreated using ultrasound or ozonation. TOC analysis revealed that between the two pretreatments studied, ozone was found to be superior over US as it led to both COD as well as TOC reduction during the aerobic oxidation step for ANA-DW effluent stream.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号