首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
污染及防治   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 273 毫秒
1
1.
Fourier transform infrared (FTIR) studies were performed to confirm the chemical modification of saltbush (Atriplex canescens) biomass and to provide information about the identity and binding characteristics of the chemical groups responsible for the binding of Cd(II), Cr(III), and Cr(VI). In addition, studies were performed to determine the optimum time for the binding of the three ions by saltbush biomass, and to study the efficiency of HCl and sodium citrate as stripping agents. The metal quantification was performed using inductively coupled plasma optical emission spectroscopy (ICP-OES). The results showed that 10 min or less is enough to achieve the maximum metal binding, and that aqueous solutions of 0.1 mM HCl or sodium citrate were enough to strip more than 80% of the bound Cd. It was determined that more than 70% of the bound Cr(III) was stripped using 0.1 mM HCl. Chemical modification of carboxyl and ester groups on the biomass was performed. The FTIR results confirmed that the esterification of carboxyl groups and hydrolysis of ester groups in the native biomass had occurred. The direct effect of these modifications on the binding properties of the biomass provided strong evidence that the carboxyl functionality is the main group responsible for binding Cd and Cr(III). However, the IR data showed that for Cr(VI), a different type of functional group is involved.  相似文献   
2.
Batch studies were performed to determine the interference of calcium (Ca) and magnesium (Mg) on the sorption of Cu(II), Cd(II), Cr(III), Cr(VI), Pb(II), and Zn(II) [from CuSO(4), K(2)Cr(2)O(7), Pb(NO(3))(2), Cr(NO(3))(3), ZnCl(2), and Cd(NO(3))(2)] by saltbush (Atriplex canescens) biomass. The results demonstrated that Ca and Mg at concentrations of at least 20 times higher than the concentration of most of the target metals did not interfere with the metal binding. The data show that the batch binding capacity from a multimetal solution at pH 5.0 was (micromol/g) about 260 for Cr(III) and Pb, and about 117, 54, and 49 for Cu, Zn, and Cd, respectively. The use of 0.1M HCl allowed the recovery of 85-100% of the bound Cu, Cr(III), and Pb, and more than 37% of the bound Cd and Zn. The column binding capacity for Pb was about 49 micromol/g from both the single and multimetal solutions, while it was, respectively about 35 and 23 micromol/g for Cr(III). The binding capacity for Cu and Zn from the single and multimetal column experiments was 35 micromol/g and less than 10 micromol/g, respectively. The stripping data from the single column experiment showed that 0.1M HCl allowed the recovery of all the bound Cu and Zn, 90% and 74% of the bound Pb and Cr(VI), respectively, and less than 25% of the bound Cd and Cr(III), while the stripping from the multimetal experiment showed that 0.1M HCl allowed the recovery of all the bound Cu and about 74%, 54%, 43%, and 40% of the bound Pb, Zn, Cd, and Cr(III), respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号