首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
环保管理   4篇
综合类   3篇
基础理论   10篇
污染及防治   8篇
评价与监测   5篇
社会与环境   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2005年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1968年   1篇
  1933年   1篇
  1931年   1篇
排序方式: 共有31条查询结果,搜索用时 812 毫秒
1.
Collaborative monitoring over broad scales and levels of ecological organization can inform conservation efforts necessary to address the contemporary biodiversity crisis. An important challenge to collaborative monitoring is motivating local engagement with enough buy-in from stakeholders while providing adequate top-down direction for scientific rigor, quality control, and coordination. Collaborative monitoring must reconcile this inherent tension between top-down control and bottom-up engagement. Highly mobile and cryptic taxa, such as bats, present a particularly acute challenge. Given their scale of movement, complex life histories, and rapidly expanding threats, understanding population trends of bats requires coordinated broad-scale collaborative monitoring. The North American Bat Monitoring Program (NABat) reconciles top-down, bottom-up tension with a hierarchical master sample survey design, integrated data analysis, dynamic data curation, regional monitoring hubs, and knowledge delivery through web-based infrastructure. NABat supports collaborative monitoring across spatial and organizational scales and the full annual lifecycle of bats.  相似文献   
2.
The International Union for Conservation of Nature's Red List of Threatened Species (IUCN Red List) is the world's most comprehensive information source on the global conservation status of species. Governmental agencies and conservation organizations increasingly rely on IUCN Red List assessments to develop conservation policies and priorities. Funding agencies use the assessments as evaluation criteria, and researchers use meta-analysis of red-list data to address fundamental and applied conservation science questions. However, the circa 143,000 IUCN assessments represent a fraction of the world's biodiversity and are biased in regional and organismal coverage. These biases may affect conservation priorities, funding, and uses of these data to understand global patterns. Isolated oceanic islands are characterized by high endemicity, but the unique biodiversity of many islands is experiencing high extinction rates. The archipelago of Hawaii has one of the highest levels of endemism of any floristic region; 90% of its 1367 native vascular plant taxa are classified as endemic. We used the IUCN's assessment of the complete single-island endemic (SIE) vascular plant flora of Kauai, Hawaii, to assess the proportion and drivers of decline of threatened plants in an oceanic island setting. We compared the IUCN assessments with federal, state, and other local assessments of Kauai species or taxa of conservation concern. Finally, we conducted a preliminary assessment for all 1044 native vascular plants of Hawaii based on IUCN criterion B by estimating area of occupancy, extent of occurrence, and number of locations to determine whether the pattern found for the SIE vascular flora of Kauai is comparable to the native vascular flora of the Hawaiian Islands. We compared our results with patterns observed for assessments of other floras. According to IUCN, 256 SIE vascular plant taxa are threatened with extinction and 5% are already extinct. This is the highest extinction risk reported for any flora to date. The preliminary assessment of the native vascular flora of Hawaii showed that 72% (753 taxa) is threatened. The flora of Hawaii may be one of the world's most threatened; thus, increased and novel conservation measures in the state and on other remote oceanic islands are urgently needed.  相似文献   
3.
Maintaining a living plant collection is the most common method of ex situ conservation for plant species that cannot be seed banked (i.e., exceptional species). Viability of living collections, and their value for future conservation efforts, can be limited without coordinated efforts to track and manage individuals across institutions. Using a pedigree-focused approach, the zoological community has established an inter-institutional infrastructure to support long-term viability of captive animal populations. We assessed the ability of this coordinated metacollection infrastructure to support the conservation of 4 plant species curated in living collections at multiple botanic gardens around the world. Limitations in current practices include the inability to compile, share, and analyze plant collections data at the individual level, as well as difficulty in tracking original provenance of ex situ material. The coordinated metacollection framework used by zoos can be adopted by the botanical community to improve conservation outcomes by minimizing the loss of genetic diversity in collections. We suggest actions to improve ex situ conservation of exceptional plant species, including developing a central database to aggregate data and track unique individuals of priority threatened species among institutions and adapting a pedigree-based population management tool that incorporates life-history aspects unique to plants. If approached collaboratively across regional, national, and global scales, these actions could transform ex situ conservation of threatened plant species.  相似文献   
4.
The availability of affordable ‘recreational’ camera traps has dramatically increased over the last decade. We present survey results which show that many conservation practitioners use cheaper ‘recreational’ units for research rather than more expensive ‘professional’ equipment. We present our perspective of using two popular models of ‘recreational’ camera trap for ecological field-based studies. The models used (for >2 years) presented us with a range of practical problems at all stages of their use including deployment, operation, and data management, which collectively crippled data collection and limited opportunities for quantification of key issues arising. Our experiences demonstrate that prospective users need to have a sufficient understanding of the limitations camera trap technology poses, dimensions we communicate here. While the merits of different camera traps will be study specific, the performance of more expensive ‘professional’ models may prove more cost-effective in the long-term when using camera traps for research.  相似文献   
5.
Signature whistles of 42 free-ranging bottle-nose dophin calves were compared to those of their mothers. Humans judged their similarity by inspection of spectrograms. There was a sex difference in the tendency of calves to produce whistles similar to or different from those of their mothers; most female calves produced whistles that were different from those of their mothers, whereas male calves were more likely to produce whistles that were similar to those of their mothers. Because matrilineally related females associate together and use signature whistles to establish and/or maintain contact with their calves, there may be a selective pressure for females to produce whistles that are distinct from those of their mothers. There may be fewer constraints governing whistle development in males, with the result that some males produce whistles similar to those of their mothers and others do not.  相似文献   
6.
As part of its long-term control plan for combined sewer overflow (CSO) abatement, the city of Buffalo, New York, maintained a network of Hydrolab Datasondes (Hydrolab-Hach Company, Loveland, Colorado) to assess receiving water-quality effects by continuously logging dissolved oxygen, pH, temperature, conductivity, and turbidity. Although the effect of individual CSOs could be visualized, turbidity levels entering the Buffalo River from the upper watershed often were greater than from CSO discharges. Turbidity data showed that the Buffalo River was a net-sediment sink. Low dissolved oxygen levels were observed in the summer during dry weather, baseflow, and watershed-wide storms and CSO events. Some CSOs did not produce dissolved oxygen sags in the receiving waters, but others did. This information, together with the sampling done for organic and inorganic contaminants, can aid the decisionmaking process when prioritizing outfalls for abatement work and provides a baseline against which receiving water-quality improvements can be measured.  相似文献   
7.
8.
Graphical models provide an important tool for facilitating communication between scientists, decision-makers, and statisticians—many complicated ecological processes can be described in terms of “box-and-arrow” conceptual diagrams (e.g., Shipley in Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inferences, Cambridge Universtiy Press, Cambridge, 2000; Clark and Gelfand TRENDS in Ecology and Evolution 21:375–380, 2006). In particular, problems in landscape ecology often involve modeling relationships among multiple physical and/or biological variables that may operate on differing spatial scales (e.g., Rossi et al. in Ecol Monographs 62:277–314, 1992; Legendre et al. in Ecography 25:601–615, 2002; Overmars et al. in Ecol Model 164:257–270, 2003; Brown and Spector in J Appl Ecol 45:1639–1648, 2008; Koniak and Noy-Meir in Ecol Model 220:1148–1158, 2008). These problems are inherently multivariate, though researchers commonly rely on univariate methods, such as spatial regression models, to address them. In this paper, we introduce a multivariate method—graphical spatial models—that extends path analysis to incorporate spatial autocorrelation in one or more variables in a directed graph. We show how both exogenous and endogenous ecological processes as defined by Legendre et al. (Ecography 25:601–615, 2002) and Lichstein et al. (Ecol Monographs 72:445–463, 2002) can be represented in a graph. Most importantly, we show how to translate graphs representing these ecological processes into statistically estimable models. We motivate our theoretical results using an example of stream health data from the Willamette Valley, Oregon. For these data we are interested in the spatial pattern within both riparian land use and an index of stream health, and whether there is an association between land use and stream health, after accounting for these spatial patterns. We use a graphical spatial model to address these ecological questions simultaneously. We find that the health of a stream decreases as the percent of developed land within a 120-m riparian buffer increases; interestingly, there is only evidence of spatial pattern within land use.  相似文献   
9.
ABSTRACT: Federal agencies in the U.S. and Canada continuously examine methods to improve understanding and forecasting of Great Lakes water level dynamics in an effort to reduce the negative impacts of fluctuating levels incurred by interests using the lakes. The short term, seasonal and long term water level dynamics of lakes Erie and Ontario are discussed. Multiplicative, seasonal ARIMA models are developed for lakes Erie and Ontario using standardized, monthly mean level data for the period 1900 to 1986. The most appropriate model identified for each lake had the general form: (1 0 1)(0 1 1)12. The data for each lake were subdivided by time periods (1900 to 1942;1 943 to 1986) and the model coefficients estimated for the subdivided data were similar, indicating general model stability for the entire period of record. The models estimated for the full data sets were used to forecast levels 1,2,3, and 6 months ahead for a period of high levels (1984 to 1986). The average absolute forecast error for Lake Erie was 0.049m, 0.076m, 0.091 m and 0.128m for the 1, 2,3, and 6 month forecasts, respectively. The average absolute forecast error for Lake Ontario was 0.058m, 0.095m, 0.120m and 0.136m for the 1,2,3, and 6 month forecasts, respectively. The ARIMA models provide additional information on water level time series structure and dynamics. The models also could be coordinated with current forecasting methods, possibly improving forecasting accuracy.  相似文献   
10.
Methane biofilter (MBF) technology, a cost effective method to control atmospheric emission of CH4, is usually developed as a passively aerated system to control low-volume point-source emissions such as those from landfills with gas collection systems. Actively aerated high-rate methane biofilter (HMBF) systems are designed to overcome the shortcomings of passively aerated systems by ensuring the entire filter bed is utilized for CH4 oxidation. Flow-through column experiments point to the fact that CH4 oxidation rates of actively aerated systems could be several times higher than that of passively aerated systems. However, reports of the performance of field HMBF systems are not available in literature. Furthermore, there are no studies that demonstrate the possibility of using laboratory data in the design and operation of field systems. The current study was conducted to fill this research gap and involve a comparative study of the performance of laboratory columns to field performance of a HMBF system using solution gas produced at an oil battery site as the CH4 source. The actively aerated column studies confirmed past results with high CH4 oxidation rates; one column received air at two injection points and achieved an oxidation rate of 1417 g/m3/d, which is the highest reported value to date for compost-filled columns. Subsequent studies at a specially designed field HMBF filled with compost showed a higher oxidation rate of 1919 g/m3/d, indicating the possibility of exceeding the high CH4 oxidation rates observed in the laboratory. The achievement of observed field oxidation rates being higher than those in the laboratory is attributed to the capability of maintaining higher temperatures in field HMBFs. Furthermore, results show that field HMBFs could operate at lower than stoichiometric air to CH4 ratios, and lower retention times than that of laboratory columns. Results indicated that laboratory columns may not truly represent field behavior, and said results could only be used in the preliminary design of field HMBFs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号