首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
废物处理   1篇
环保管理   3篇
污染及防治   2篇
  2016年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Dissolved phosphorus (DP) can be released from wetlands as a result of flooding or shifts in water column concentrations. Our objectives were to determine the long-term (1460 d) DP retention and release characteristics of an in-stream wetland, and to evaluate how these characteristics respond to flooding, draining, and changes in DP concentrations. The studied in-stream wetland drains an agriculturally intensive subwatershed in the North Carolina Coastal Plain region. The wetland's DP retention and release characteristics were evaluated by measuring inflow and outflow DP concentrations, DP mass balance, and DP movement across the sediment-water column interface. Phosphorus sorption isotherms were measured to determine the sediment's equilibria P concentration (EPCo), and passive samplers were used to measure sediment pore water DP concentrations. Initially, the in-stream wetland was undersized (0.31 ha) and released 1.5 kg of DP. Increasing the in-stream wetland area to 0.67 ha by flooding resulted in more DP retention (28 kg) and low outflow DP concentrations. Draining the in-stream wetland from 0.67 to 0.33 ha caused the release of stored DP (12.1 kg). Shifts both in sediment pore water DP concentrations and sediment EPCo values corroborate the release of stored DP. Reflooding the wetland from 0.33 to 0.85 ha caused additional release of stored DP into the outflowing stream (10.9 kg). We conclude that for a time period, this in-stream wetland did provide DP retention. During other time periods, DP was released due to changes in wetland area, rainfall, and DP concentrations.  相似文献   
2.
The ability of wetlands to retain P makes them an important landscape feature that buffers P movement. However, their P retention ability can be compromised through hydrologic disturbances caused by hurricanes and tropical storms (TS). This study had three objectives: (i) to determine the effects of hurricanes and TS on dissolved phosphorus (DP) concentrations and loads discharged from a Coastal Plain in-stream wetland (ISW); (ii) to evaluate shifts in P storage pools that would reflect P accretion/removal patterns; and (iii) to determine if relationships exist between storm characteristics with releases of DP and water volume. From January 1996 to October 1999, the ISW's outflow DP concentrations and flow volumes (Q) were measured and they were used to calculate DP mass export loads. In addition, the sediment total phosphorus (TP) concentrations were measured, and both the water column and sediment pore water DP concentrations were examined using passive samplers. In several instances, TS facilitated greater DP releases than a single hurricane event. The largest release of DP occurred in 1999 after Hurricanes Dennis, Floyd, and Irene. The large differences in DP exports among the storms were explained by Q variations. Storm activity also caused changes in sediment pore water DP and sediment TP concentrations. This study revealed that some TS events caused higher DP releases than a single hurricane; however, multiple hurricanes delivering heavy precipitation totals significantly increased DP export.  相似文献   
3.
Trading of greenhouse gas (GHG) emission reductions is an attractive approach to help producers implement cleaner treatment technologies to replace current anaerobic lagoons. Our objectives were to estimate greenhouse gas (GHG) emission reductions from implementation of aerobic technology in USA swine farms. Emission reductions were calculated using the approved United Nations framework convention on climate change (UNFCCC) methodology in conjunction with monitoring information collected during full-scale demonstration of the new treatment system in a 4360-head swine operation in North Carolina (USA). Emission sources for the project and baseline manure management system were methane (CH4) emissions from the decomposition of manure under anaerobic conditions and nitrous oxide (N2O) emissions during storage and handling of manure in the manure management system. Emission reductions resulted from the difference between total project and baseline emissions. The project activity included an on-farm wastewater treatment system consisting of liquid-solid separation, treatment of the separated liquid using aerobic biological N removal, chemical disinfection and soluble P removal using lime. The project activity was completed with a centralized facility that used aerobic composting to process the separated solids. Replacement of the lagoon technology with the cleaner aerobic technology reduced GHG emissions 96.9%, from 4972 tonnes of carbon dioxide equivalents (CO2-eq) to 153 tonnes CO2-eq/year. Total net emission reductions by the project activity in the 4360-head finishing operation were 4776.6 tonnes CO2-eq per year or 1.10 tonnes CO2-eq/head per year. The dollar value from implementation of this project in this swine farm was US$19,106/year using current Chicago Climate Exchange trading values of US$4/t CO2. This translates into a direct economic benefit to the producer of US$1.75 per finished pig. Thus, GHG emission reductions and credits can help compensate for the higher installation cost of cleaner aerobic technologies and facilitate producer adoption of environmentally superior technologies to replace current anaerobic lagoons in the USA.  相似文献   
4.
The wide application of microalgae in the field of wastewater treatment and bioenergy source has improved research studies in the past years. Microalgae represent a good source of biomass and bio-products which are used in different medical and industrial activities, among them the production of high-valued products and biofuels. The present review focused on greywater treatment through the application of phycoremediation technique with microalgae and presented recent advances in technologies used for harvesting the microalgae biomass. The advantages and disadvantages of each method are discussed. The microbiological aspects of production, harvesting and utilization of microalgae biomass are viewed.  相似文献   
5.
Free fatty acids and sterols were assessed in fresh manure and anaerobic lagoon sludge from swine production facilities in North Carolina. Eight free fatty acids and five sterols were identified and quantified in both manure and sludge samples. Compound identification was performed by gas chromatography/mass spectroscopy (GC-MS), and compound quantities were determined by gas chromatography after solid phase extraction with a 50:50 mixture of diethyl ether and hexane. The free fatty acids occurring in greatest abundance in both fresh manure and lagoon sludge were palmitic, oleic, and stearic. Free fatty acid content in fresh manure ranged from approximately 3 microg g(-1) dry weight (dw) to over 45 microg g(-1) dw. In lagoon sludge, free fatty acid content ranged from about 0.8 microg g(-1) dw to nearly 4 microg g(-1) dw. Coprostanol and epicoprostanol were the sterols in largest concentrations in fresh manure and lagoon sludge samples. Total sterol content ranged from approximately 0.5 microg g(-1) dw to around 11 microg g(-1) dw in fresh manure and from 3.5 microg g(-1) dw to almost 9 microg g(-1) dw in lagoon sludge. Fresh manure and lagoon sludge both had high levels of inorganic cations (e.g., Ca, Mg, Fe) capable of binding free fatty acids and forming insoluble complexes, thereby potentially reducing fatty acid biodegradation. In anaerobic lagoons, sterols are an organic fraction of sludge that are resistant to bacterial degradation. In the case of fresh manure, fatty acids could represent a potential source of energy via the manufacture of biodiesel fuel, if efficient means for their extraction and transesterification can be devised.  相似文献   
6.
There is a need for treatment technologies that can eliminate environmental problems associated with anaerobic lagoons. These technologies must be able to capture nutrients, kill pathogens, and reduce emissions of ammonia and nuisance odors. To meet these needs, a full-scale wastewater treatment plant was installed as a demonstration project on one of three 4360-pig (Sus scrofa) production units in a finishing farm in Duplin County, North Carolina. Once the treatment plant was operational, flow of raw manure into the unit's corresponding lagoon was discontinued and the lagoon was used to store treated wastewater. Water quality was monitored in the converted lagoon and in the two conventional lagoons. A gas chromatographic method was developed to measure concentration of five selected malodorous compounds (phenol, p-cresol, 4-ethylphenol, indole, and skatole) in liquid lagoon samples. Dramatic improvements in the water quality parameters TKN, NH3-N, solids, COD, and BOD in the converted waste lagoon paralleled reductions in malodorous compounds. Nine months after conversion, identified malodorous compounds in liquid extractions averaged 6.6 and 38.8 ng mL(-1) in water from the converted lagoon and the conventional lagoons, respectively. The reduction was particularly marked for p-cresol, 4-ethylphenol, and skatole, all of which make important contributions to swine waste odors due to their characteristic odors and low detection thresholds.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号