首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
环保管理   1篇
  1999年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
ABSTRACT: The successful design of constructed wetlands requires a continuous supply of water or vegetation that can withstand drought conditions. Having a constant water source is the best alternative to insure species diversity throughout the season. Consequently, detention structure designs should be based on times between events as well as on hydrologic return periods, since between events is when most evaporation and infiltration losses are likely to occur. In arid or semi-arid environments, this is a difficult process because of long interevent times and seasonal changes in precipitation patterns. This discussion is predicated on the assumption that phytoplankton, epiphytic algae, and emergent vegetation require moist conditions to be effective at removing nutrients, metals and other pollutants. There are drought tolerant species of vegetation that can be used in constructed wetlands but it may take several days to re-establish the attached bacteria communities necessary for optimum pollutant removal. This paper examines a stochastic framework to examine the probability of extended dry periods based on historic rainfall data. The number of consecutive dry days is selected for a specified level of assurance. By multiplying this value by the sum of daily system losses, an overall pond volume can be determined that ensures a minimum depth of water. To illustrate the utility of the approach, the method is applied to a site in Spokane, Washington.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号