首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
安全科学   2篇
综合类   2篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
酸化油页岩灰吸附Ni(Ⅱ)的研究   总被引:2,自引:0,他引:2  
采用质量分数为50%的HNO3制备酸化油页岩灰吸附剂,研究吸附时间、吸附温度、Ni(Ⅱ)初始浓度、溶液pH值、吸附剂投加量和吸附剂粒径对酸化油页岩灰吸附性能的影响.结果表明,一定范围内,酸化油页岩灰吸附剂的吸附量(Qe)随吸附温度、Ni(Ⅱ)初始浓度、溶液pH值、吸附剂投加量的增加而增加,随吸附剂粒径的增加而减小.吸附温度对吸附刺的最大吸附量Q有明显影响.当Ni(Ⅱ)初始质量浓度为100 mg/L,溶液pH值为6.0,吸附剂粒径为53~75μm,吸附剂投加量为16.0 g/L,吸附搅拌速度为400 r/min时,25℃、30℃、35℃下酸化油页岩灰的最大吸附量Q分别为17.0 mg/g、33.2mg/g、42.9mg/g,且吸附主要以离子交换的化学吸附方式为主.酸化油页岩灰吸附剂对Ni(Ⅱ)的吸附符合Languir等温吸附方程,温度为25℃、30℃、35℃,溶液pH值为6.0,油页岩灰吸附剂投加量为16.0 g/L,油页岩灰吸附剂粒径为53~75μm条件下,酸化油页岩灰对Ni(Ⅱ)的最大吸附量Q分别为17.0mg/g、33.2 mg/g、42.9 mg/g.研究表明,油页岩灰经过酸化改性后可作为吸附荆处理含Ni(Ⅱ)废水,具有较好的市场应用前景.  相似文献   
2.
废电路板热解特性及其动力学分析   总被引:5,自引:1,他引:4  
分别应用热天平和管式炉反应器对废电路板的热解行为进行实验研究.通过热重分析法,考察了在氮气气氛下,不同升温速率(10 K/min、15 K/min、20 K/min、40 K/min)对废电路板热解特性的影响.结果表明,升温速率对废电路板热解失重曲线有较大影响,反应起始温度,失重率最大时的温度和反应结束温度均随升温速率的提高而相应增加.热解动力学研究表明,废电路板热解反应符合一级反应动力学,反应活化能和指前因子均随升温速率的增大而呈上升趋势,活化能在110~180 kJ/mol,指前因子在2.0×107~1.2×1013 min-1.此外,在管式炉反应器上,考察在同一升温速率(20 K/min)下不同热解终温(400 ℃、500 ℃、600 ℃、700 ℃、800 ℃)对废电路板热解产物产率和气体成分分布的影响.结果表明,当温度在600 ℃以上时,固体残渣的产率变化不大,升高温度只是改变油气比; 电路板热解气的主要成分是H2、CO、CO2、CH4、C2H4、C2H6、C3H6和C3H8,气体热值在11.24~15.21 MJ/m3,焦油热值在24.5~27.5 MJ/kg范围内.热解后所得固体残渣是易碎的,其中玻璃纤维部分呈层状分开,很容易对残渣中的金属和玻璃纤维部分进行分离.  相似文献   
3.
以焚烧飞灰为主要原料,采用灰熔点测试、差示扫描量热法、X射线衍射、扫描电子显微镜等方法,研究了掺加SiO2(以w计)对焚烧飞灰熔融特性的影响,并利用CASTEP模块模拟计算生成矿物的反应活性. 结果表明,当w(SiO2)为29.14%时,焚烧飞灰流动温度为1 355 ℃,比原灰降低了近200 ℃,熔融特征温度随w(SiO2)增加而上升. 将焚烧飞灰熔融并热处理后得到微晶玻璃,其矿物质组成为硅灰石、假硅灰石、钙铝黄长石、钙铁榴石、硬石膏和三型钾霞石等. 分子模拟计算结果表明,假硅灰石、钙铝黄长石和钙铁榴石形成能高,属耐熔矿物,而硅灰石、硬石膏和三型钾霞石等助熔矿物的低共熔会导致灰熔融温度降低. SiO2/CaO(质量比,下同)<1时,过量的Ca2+易与活性氧发生集聚反应,形成热稳定性好的假硅灰石;SiO2/CaO接近于1时,生成以硅灰石为主晶相的助熔矿物,硅灰石形成能为-41.67 eV,低于其他矿物,并且晶体氧原子中活性氧比例达到77.78%;当SiO2/CaO>1时,大量无定形SiO2及方石英(非活性氧)的存在致使灰熔融温度升高. 硅酸盐矿物熔体中非活性氧(Si—O—Si)和活性氧(Si—O,自由氧)占氧原子比例的变化是焚烧飞灰熔融特性改变的内因.   相似文献   
4.
近年来,城市生活垃圾焚烧因其减容减量效果明显引起了广泛关注。然而,作为副产品的焚烧飞灰属于危险废物,其安全处置不容忽视。对水泥固化、化学药剂稳定化、酸溶剂提取、熔融固化四种飞灰处理方法进行了分析,阐述了各自的优缺点;详细介绍了飞灰熔融处理技术的相关进展,指出节能降耗是现阶段飞灰熔融亟待解决的问题。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号