首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
综合类   5篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
聚磷生物膜的快速启动及微生物特性研究   总被引:2,自引:0,他引:2  
章豪  高碧霄  潘杨  冯鑫 《环境科学学报》2019,39(10):3317-3324
在同步去除并富集磷的基础上,探究采用前期不排泥、后期排泥的挂膜方式对聚磷生物膜反应器的运行效能、微生物特征及群落结构的影响.结果表明,经过驯化运行,聚磷生物膜的蓄磷能力明显提升.在挂膜阶段,生物膜厚度及EPS含量出现一定程度的增长;PN/PS上升至3.12,PN/PS比值增加有利于微生物粘附在填料上.在好氧出水达标的情况下,富集液中磷酸盐浓度提升至89.5 mg·L~(-1),达到了鸟粪石回收标准.高通量测序结果表明,经过富集培养,微生物群落多样性呈下降趋势,群落组成变化明显.优势菌门为变形菌门(Proteobacteria),其丰度从33.6%增长至75.3%;反应器中的聚磷菌属丰度明显增加,从11.8%上升至23.2%,红环菌属(Rhodocyclaceae)、UKL 13-1为反应器中的优势聚磷菌.  相似文献   
2.
基于生物膜法磷回收工艺厌氧释磷研究   总被引:4,自引:1,他引:3  
单捷  潘杨  章豪  冯鑫 《环境科学学报》2020,40(8):2749-2757
城市污水经过碳回收后的低碳源进水水质将对活性污泥法强化除磷(EBPR)工艺的运行带来困难.本研究基于生物膜法磷回收的序批式反应器(Biofilm-SBR)对低碳、低磷进水进行磷回收,在BSBR反应器好氧无碳源、厌氧低碳源投加的运行基础上,研究了该工艺在低碳模式下厌氧磷释放的关键影响因素.同时,研究了不同的碳源浓度和碳源投加方式对BSBR工艺释磷的影响.最后,分析了系统中生物膜蓄磷量的变化,并探究其与碳源消耗、释磷效果的量化关系.结果表明,该系统在好氧无碳源、厌氧仅200 mg·L-1的碳源投加下,即可取得115 mg·L-1(可溶性磷)的富磷回收液.系统的Cupt/Prel(释放单位质量磷的COD消耗量)平均为(11.12±1.03)mg·mg-1,最大蓄磷量为124 mg·g-1.  相似文献   
3.
同步去除并富集磷酸盐生物膜驯化过程中微生物种群分析   总被引:2,自引:1,他引:1  
孟璇  潘杨  章豪  廖烜弘  徐林建  冯鑫  单捷 《环境科学》2018,39(6):2802-2809
本实验以同步去除并回收高浓度磷酸盐溶液为目标,开展了以挂式尼龙为生物载体的生物膜驯化培养聚磷菌的人工配水实验研究.通过扫描电镜(SEM)和Illumina MiSeq高通量测序分析技术研究了生物膜驯化过程中生物膜内菌群形态、优势菌及物种多样性变化并验证了短时间内在该常规生物膜上回收高浓度磷酸盐的可行性.反应器运行10 d后挂膜成功,COD出水50 mg·L~(-1)以下,出水磷浓度接近于零,磷去除率95%以上,并在该水平上稳定运行40 d.SEM结果显示50 d时微生物菌落均匀饱满,外形规则,轮廓清晰,成球状.MiSeq高通量测序发现优势菌门包括变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、Ignavibacteriae门、硝化螺旋菌门(Nitrospirae).其中变形菌门从47%增长至58%,占主导地位.而优势聚磷菌为Rhodocyclaceae,从17.9%增长至28.9%.回收阶段,通过提高进水磷酸盐浓度和厌氧阶段溶液中COD浓度,富磷溶液浓度从40 mg·L~(-1)升高到82 mg·L~(-1),在生物膜上实现磷酸盐的富集,并且浓度满足鸟粪石法磷回收的要求.  相似文献   
4.
聚磷生物膜反应器磷负荷提升过程中微生物种群分析   总被引:3,自引:3,他引:0  
章豪  冯鑫  单捷  潘杨 《环境科学学报》2019,39(11):3764-3771
在同步去除及富集磷酸盐的基础上,通过研究水力停留时间(8 h、6 h、4 h)及不同的进水磷浓度考察磷负荷对于反应器的运行效能和微生物群落结构的影响,探究生物膜反应器所能承受的最大磷负荷,并探究微生物种群与工艺性能的响应关系,获取高效生物膜驯化的最优进水磷条件,以及分析该条件下的种群结构.结果表明,在驯化阶段,在磷负荷低于0.18 kg·m~(-3)·d~(-1)时,磷负荷的提升不会影响磷去除率,磷去除率保持在98.3%;当磷负荷达到0.24 kg·m~(-3)·d~(-1)时,磷去除率下降到84.3%,但P_(rel)/C_(upt)依旧从最初的0.06上升至0.121.MiSeq测序结果表明优势菌门为变形菌门(Proteobacteria),从59.2%增长至83.5%,反应器中的优势聚磷菌科为红环菌科(Rhodocyclaceae),从11.8%增长至27.3%.在回收阶段,在保证好氧出水达标的情况下,磷酸盐浓度升高至56.4 mg·L~(-1),富集液浓度达到鸟粪石法回收磷的标准.通过增加进水磷负荷可使聚磷菌丰度提高,进而提高了回收液磷浓度.  相似文献   
5.
好氧段碳源浓度对同步去除和富集磷酸盐生物膜的影响   总被引:1,自引:1,他引:1  
徐林建  潘杨  章豪  冯鑫  魏攀龙  尤星怡 《环境科学》2019,40(7):3179-3185
利用聚磷菌以循环交替O/A模式运行,对生活污水处理厂的主流工艺中实现磷酸盐的同步去除和富集,探究了好氧段碳源浓度对聚磷生物膜去除和富集磷酸盐性能以及生物膜中微生物种群结构的影响.结果表明,好氧COD质量浓度从200 mg·L~(-1)降低到0 mg·L~(-1),吸磷速率提升1. 29倍,出水磷质量浓度稳定在0. 5 mg·L~(-1)以下;释磷速率提升3. 56倍,富集液磷酸盐质量浓度从27. 125 mg·L~(-1)升高到55. 91 mg·L~(-1).微生物群落变化中,鉴定为聚磷菌的变形菌门(Proteobacteria)的含量增加约2倍,红环菌科(Rhodocyclaceae)和厌氧绳菌科(Anaerolineaceae)的富集效果分别提高了2. 28和5倍.降低好氧段碳源浓度,有利于聚磷菌的筛选和富集,强化了好氧段磷酸盐的去除以及厌氧段磷酸盐的释放,获得了更高的磷酸盐富集液,并且为以资源回收为目的的未来城市污水处理厂提供降低好氧段碳源需求的理论基础.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号