首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
废物处理   1篇
环保管理   2篇
综合类   3篇
基础理论   10篇
污染及防治   2篇
评价与监测   1篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2011年   3篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2000年   2篇
  1994年   1篇
  1990年   2篇
排序方式: 共有19条查询结果,搜索用时 62 毫秒
1.
Multimodal defensive displays are commonplace, with prey combining conspicuous coloration, sounds, odours and other chemical emissions to deter predators. These components can signal to predators in multiple signal modalities to warn them that prey are defended. The aim of our review is to examine the form and function of multimodal warning displays. Data collected from the literature on multimodal insect warning displays show the degree of complexity and diversity that needs to be explained, and we identify patterns in the data that may be worthy of more rigorous investigation. We also provide a theoretical framework for the study of multimodal warning displays, and evaluate the evidence for different functional hypotheses that can explain their widespread evolution. Our review highlights that whilst multimodal warning displays are well documented, particularly in insects, we lack a good understanding of their function in natural predator–prey systems.  相似文献   
2.
Iwao's quadratic regression or Taylor's Power Law (TPL) are commonly used to model the variance as a function of the mean for sample counts of insect populations which exhibit spatial aggregation. The modeled variance and distribution of the mean are typically used in pest management programs to decide if the population is above the action threshold in any management unit (MU) (e.g., orchard, forest compartment). For nested or multi-level sampling the usual two-stage modeling procedure first obtains the sample variance for each MU and sampling level using ANOVA and then fits a regression of variance on the mean for each level using either Iwao or TPL variance models. Here this approach is compared to the single-stage procedure of fitting a generalized linear mixed model (GLMM) directly to the count data with both approaches demonstrated using 2-level sampling. GLMMs and additive GLMMs (AGLMMs) with conditional Poisson variance function as well as the extension to the negative binomial are described. Generalization to more than two sampling levels is outlined. Formulae for calculating optimal relative sample sizes (ORSS) and the operating characteristic curve for the control decision are given for each model. The ORSS are independent of the mean in the case of the AGLMMs. The application described is estimation of the variance of the mean number of leaves per shoot occupied by immature stages of a defoliator of eucalypts, the Tasmanian Eucalyptus leaf beetle, based on a sample of trees within plots from each forest compartment. Historical population monitoring data were fitted using the above approaches.  相似文献   
3.
4.
Aposematic species advertise their unpalatability to potential predators using conspicuous warning colouration. The initial evolution of aposematism is thought to occur by warningly coloured mutants emerging in an already unpalatable cryptic species. However, possessing defence chemicals is often costly, and it is difficult to understand what the selective benefits might be for a mutation causing its bearer to be defended in a population of otherwise palatable cryptic prey. One solution to this problem is that chemically defended individuals are tasted and rejected by predators, and are, therefore, more likely to survive predatory attacks than undefended individuals. Using naïve domestic chicks Gallus gallus domesticus as predators and cryptic green chick crumbs as prey, we asked whether the accuracy with which birds discriminated between palatable and unpalatable prey was affected by the palatability of the unpalatable prey (moderately or highly defended), or their frequency in the population (10 or 25%). Birds could discriminate between green prey on the basis of their defences, and showed better discrimination between palatable and unpalatable prey when defended crumbs were highly unpalatable, compared to when they were moderately unpalatable. Although there was no detectable effect of the frequency of unpalatable prey in the population on predator taste-rejection behaviour in our main analysis, frequency did appear to affect the strategies that birds used in their foraging decisions when prey were only moderately unpalatable. How birds used taste to reject prey also suggests that birds may be able to monitor and regulate their chemical intake according to the frequency and defence levels of the unpalatable prey. Taken together, these results show that avian predators can generate selection for unpalatability in cryptic prey by sampling and taste-rejecting prey, but that a relatively large chemical difference between palatable and unpalatable prey may be necessary before unpalatable prey can enjoy a selective advantage. The exact nature of this evolutionary dynamic will depend on other environmental factors, such as defence costs and prey availability, but it provides a mechanism by which defences can evolve in a cryptic population.  相似文献   
5.
Lead, cadmium and zinc concentrations have been obtained in a total of 83 soil and dust samples in and around the city of Cuenca, Ecuador. Elevated heavy metal concentrations were observed in the city, with comparable Pb concentrations to those commonly found in European and North American cities. Lead concentrations were also elevated above the estimated regional background (less than 9 microg g(-1)) along a rural track used by about 100 vehicles per day. The extent of the contamination by Cd and Zn was restricted to the urban area.  相似文献   
6.
Global emissions trading allows for agricultural measures to be accounted for the carbon sequestration in soils. The Environmental Policy Integrated Climate (EPIC) model was tested for central European site conditions by means of agricultural extensification scenarios. Results of soil and management analyses of different management systems (cultivation with mouldboard plough, reduced tillage, and grassland/fallow establishment) on 13 representative sites in the German State Baden-Württemberg were used to calibrate the EPIC model. Calibration results were compared to those of the Intergovernmental Panel on Climate Change (IPCC) prognosis tool. The first calibration step included adjustments in (a) N depositions, (b) N2-fixation by bacteria during fallow, and (c) nutrient content of organic fertilisers according to regional values. The mixing efficiency of implements used for reduced tillage and four crop parameters were adapted to site conditions as a second step of the iterative calibration process, which should optimise the agreement between measured and simulated humus changes. Thus, general rules were obtained for the calibration of EPIC for different criteria and regions. EPIC simulated an average increase of +0.341 Mg humus-C ha−1 a−1 for on average 11.3 years of reduced tillage compared to land cultivated with mouldboard plough during the same time scale. Field measurements revealed an average increase of +0.343 Mg C ha−1 a−1 and the IPCC prognosis tool +0.345 Mg C ha−1 a−1. EPIC simulated an average increase of +1.253 Mg C ha−1 a−1 for on average 10.6 years of grassland/fallow establishment compared to an average increase of +1.342 Mg humus-C ha−1 a−1 measured by field measurements and +1.254 Mg C ha−1 a−1 according to the IPCC prognosis tool. The comparison of simulated and measured humus C stocks was r2 ≥ 0.825 for all treatments. However, on some sites deviations between simulated and measured results were considerable. The result for the simulation of yields was similar. In 49% of the cases the simulated yields differed from the surveyed ones by more than 20%. Some explanations could be found by qualitative cause analyses. Yet, for quantitative analyses the available information from farmers was not sufficient. Altogether EPIC is able to represent the expected changes by reduced tillage or grassland/fallow establishment acceptably under central European site conditions of south-western Germany.  相似文献   
7.
Zero tillage is recognized as a potential measure to sequester carbon dioxide in soils and to reduce CO2 emissions from arable lands. An up-scaling approach of the output of the Environmental Policy Integrated Climate (EPIC) model with the information system SLISYS-BW has been used to estimate the CO2-mitigation potential in the state of Baden-Württemberg (SW-Germany). The state territory of 35,742 km2 is subdivided into eight agro-ecological zones (AEZ), which have been further subdivided into a total of 3976 spatial response units. Annual CO2-mitigation rates where estimated from the changes in soil organic carbon content comparing 30 years simulations under conventional and zero tillage. Special attention was given to the influence of tillage practices on the losses of organic carbon through soil erosion, and consequently on the calculation of CO2-mitigation rates. Under conventional tillage, mean carbon losses through erosion in the AEZ were estimated to be up to 0.45 Mg C ha−1 a−1. The apparent CO2-mitigation rate for the conversion from conventional to zero tillage ranges from 0.08 to 1.82 Mg C ha−1 a−1 in the eight AEZ, if the carbon losses through soil erosion are included in the calculations. However, the higher carbon losses under conventional tillage compared to zero tillage are composed of both, losses through enhanced CO2 emissions, and losses through intensified soil erosion. The adjusted net CO2-mitigation rates of zero tillage, subtracting the reduced carbon losses through soil erosion, are between 0.07 and 1.27 Mg C ha−1 a−1 and the estimated net mitigation rate for the entire state amounts to 285 Gg C a−1. This equals to 1045 Gg CO2-equivalents per year with the cropping patterns in the reference year 2000. The results call attention to the necessity to revise those estimation methods for CO2-mitigation which are exclusively or predominantly based on the measurements of differential changes in total soil organic carbon without taking into account the tillage effects on carbon losses through soil erosion.  相似文献   
8.
Globally, yam (Dioscorea spp.) is the fifth most important root crop after sweet potatoes (Ipomoea batatas L.) and the second most important crop in Africa in terms of production after cassava (Manihot esculenta L.) and has long been vital to food security in sub-Saharan Africa (SSA). Climate change is expected to have its most severe impact on crops in food insecure regions, yet very little is known about impact of climate change on yam productivity. Therefore, we try estimating the effect of climate change on the yam (variety: Florido) yield and evaluating different adaptation strategies to mitigate its effect. Three regional climate models REgional MOdel (REMO), Swedish Meteorological and Hydrological Institute Regional Climate Model (SMHIRCA), and Hadley Regional Model (HADRM3P) were coupled to a crop growth simulation model namely Environmental Policy Integrated Climate (EPIC) version 3060 to simulate current and future yam yields in the Upper Ouémé basin (Benin Republic). For the future, substantial yield decreases were estimated varying according to the climate scenario. We explored the advantages of specific adaptation strategies suggesting that changing sowing date may be ineffective in counteracting adverse climatic effects. Late maturing cultivars could be effective in offsetting the adverse impacts. Whereas, by coupling irrigation and fertilizer application with late maturing cultivars, highest increase in the yam productivity could be realized which accounted up to 49 % depending upon the projection of the scenarios analyzed.  相似文献   
9.
10.
Few studies have examined long-term ecological effects of sustained low-level nutrient enhancement on wetland biota. To determine sustained effects of phosphorus (P) addition on Everglades marshes we added P at low levels (5, 15, and 30 microg L(-1) above ambient) for 5 yr to triplicate 100-m flow-through channels in pristine marsh. A cascade of ecological responses occurred in similar sequence among treatments. Although the rate of change increased with dosing level, treatments converged to similar enriched endpoints, characterized most notably by a doubling of plant biomass and elimination of native, calcareous periphyton mats. The full sequence of biological changes occurred without an increase in water total P concentration, which remained near ambient levels until Year 5. This study indicates that Everglades marshes have a near-zero assimilative capacity for P without a state change, that ecosystem responses to enrichment accumulate over time, and that downstream P transport mainly occurs through biota rather than the water column.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号