首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2012年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Relative growth rate (RGR) is currently the most commonly used method for measuring and comparing species' intrinsic growth potential. Comparative studies have, for example, revealed that small-seeded species have higher RGR, leading to the common belief that small-seeded species possess physiological adaptations for rapid growth that would allow them to outgrow large-seeded species, given sufficient time. We show that, because RGR declines as individual plants grow, it is heavily biased by initial size and does not measure the size-corrected growth potential that determines the outcome of competition in the long-term. We develop a daily growth model that includes a simple mechanistic representation of aboveground and belowground growth and its dependency on plant size and environmental factors. Intrinsic growth potential is encapsulated by the size-independent growth coefficient, G. We parameterized the model using repeated-harvest data from 1724 plants of nine species growing in contrasting nutrient and temperature regimes. Using information-theoretic criteria, we found evidence for interspecific differences in only three of nine model parameters: G, aboveground allocation, and frost damage. With other parameters shared between species, the model accurately reproduced above- and belowground biomass trajectories for all nine species in each set of environmental conditions. In contrast to conventional wisdom, the relationship between G and seed size was positive, despite a strong negative correlation between seed size and average RGR, meaning that large-seeded rather than small-seeded species have higher size-corrected growth potential. Further, we found a significant positive correlation between G and frost damage that, according to simulations, causes rank reversals in final biomass under daily temperature changes of +/- 5 degrees C. We recommend the wider use of this new kind of plant growth analysis as a better way of understanding underlying differences in species' physiology; but we recognize that RGR is still a useful metric if considering the potential rate of population increase in empty habitats.  相似文献   
2.
Plant growth rates and seed size: a re-evaluation   总被引:1,自引:0,他引:1  
Small-seeded plant species are often reported to have high relative growth rate or RGR. However, because RGR declines as plants grow larger, small-seeded species could achieve higher RGR simply by virtue of their small size. In contrast, size-standardized growth rate or SGR factors out these size effects. Differences in SGR can thus only be due to differences in morphology, allocation, or physiology. We used nonlinear regression to calculate SGR for comparison with RGR for 10 groups of species spanning a wide range of life forms. We found that RGR was negatively correlated with seed mass in nearly all groups, but the relationship between SGR and seed mass was highly variable. We conclude that small-seeded species only sometimes possess additional adaptations for rapid growth over and above their general size advantage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号