首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
环保管理   7篇
综合类   8篇
基础理论   2篇
污染及防治   3篇
  2015年   3篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2003年   3篇
  2001年   1篇
  1988年   1篇
  1961年   3篇
  1960年   3篇
  1959年   1篇
  1958年   1篇
排序方式: 共有20条查询结果,搜索用时 812 毫秒
1.
2.
3.
Eutrophication of surface waters can be accelerated by agricultural inputs of phosphorus (P), provided that P is in a form that can be utilized by aquatic algae. We studied anion exchange resin (AER) extraction and a dual culture algal assay (DCAA) for the determination of potentially algal-available P in water samples without sediment preconcentration. Our material consisted of agricultural and forest runoff and wastewaters. The results obtained by the two methods were essentially equal when the samples contained only small amounts of particulate phosphorus (PP) in relation to dissolved molybdate-reactive phosphorus (DRP). However, in turbid agricultural runoff, P extracted with AER averaged 72% (n = 17) of the P yield of the 3-wk DCAA (R2 = 0.94). When the runoff samples were diluted for the AER extraction in the same manner as for the DCAA, the AER-P yield increased to 85% (n = 5) of DCAA-P. The minimum detectable value was greater for the AER test (41 microg L(-1) AER-extractable P) than for the DCAA (7 microg L(-1) DCAA-P). At concentrations greater than about 50 microg L(-1) AER-P or DCAA-P, the accuracy of the methods was satisfactory, with the coefficient of variation in replicated analyses being less than 10% for the AER test and less than 20% for the DCAA. Other anions competing for the exchange sites of the AER decreased P recovery by 15 to 20% when their equivalent concentration exceeded about 4 mmol, L(-1), and this effect was relatively constant over a large concentration range. We consider that AER extraction is a suitable low-cost method to estimate the algal availability of P in runoff samples.  相似文献   
4.
Carbon acquisition strategies for marine macroalgae   总被引:1,自引:0,他引:1  
A model system was developed to analyse differences in carbon acquisition strategies among macroalgae. During photosynthesis in a limited volume of seawater the capability of the algae to assimilate inorganic carbon as well as to change the alkalinity of the seawater was analysed. These properties were then related to the status of the carbonate equilibrium system of the seawater. The experimental system was assumed to simulate the conditions in the boundary layer during periods of low water exchange or high intensity irradiations. Fundamental differences were found between different algal classes, suggesting that capabilities to adapt to specific environmental conditions may be connected with dissimilarities in carbon acquisition strategies. In general, green algae were able to reach the highest pH (10.8 at 5°C), and thus to achieve the highest reduction in the level of inorganic carbon via a simple HCO3 /OH ion exchange process. For brown algae, pH increases due to carbon uptake never exceeded pH 9.7 (9.5 in a saltwater scale). In spite of this, members of the Fucaceae (littoral brown algae) were able to extract almost all of the dissolved inorganic carbon (DIC). This was achieved through a gradual decrease in the alkalinity of the enclosed water, so that the carbon assimilation could continue without any concomitant increase in pH. For red algae, the specific response was an increase in the level of inorganic carbon. Thus, for this algal class, no specific strategy for handling a shortage of inorganic carbon was documented. Within each algal class, differences in pH and DIC compensation points could be related to differences in the depths at which the algal species occurred. This paper also introduces a low cost and convenient method of analysing DIC in seawater.  相似文献   
5.
Contribution of particulate phosphorus to runoff phosphorus bioavailability   总被引:1,自引:0,他引:1  
Runoff P associated with eroded soil is partly solubilized in receiving waters and contributes to eutrophication, but the significance of particulate phosphorus (PP) in the eutrophying P load is debatable. We assessed losses of bioavailable P fractions in field runoff from fine-textured soils (Cryaquepts). Surface runoff at four sites and drain-flow at two of them was sampled. In addition to dissolved molybdate-reactive phosphorus (DRP) losses, two estimates of bioavailable PP losses were made: (i) desorbable PP, assessed by anion exchange resin-extraction (AER-PP) and (ii) redox-sensitive PP, assessed by extraction with bicarbonate and dithionite (BD-PP). Annual losses of BD-PP and AER-PP were derived from the relationships (R2 = 0.77-0.96) between PP and these P forms. Losses of BD-PP in surface runoff (94-1340 g ha(-1)) were typically threefold to fivefold those of DRP (29-510 kg ha(-1)) or AER-PP (13-270 g ha(-1)). Where monitored, drainflow P losses were substantial, at one of the sites even far greater than those via the surface pathway. Typical runoff DRP concentration at the site with the highest Olsen-P status (69-82 mg kg(-1)) was about 10-fold that at the site with the lowest Olsen P (31-45 mg kg(-1)), whereas the difference in AER-PP per mass unit of sediment was only threefold, and that of BD-PP 2.5-fold. Bioavailable P losses were greatly influenced by PP runoff, especially so on soils with a moderate P status that produced runoff with a relatively low DRP concentration.  相似文献   
6.
Reduction-induced phosphorus (P) release from particles transported by field runoff has been poorly studied for want of a method that could be used for large surveys. To rectify this shortcoming, we modified the bicarbonate-dithionite (BD) extraction step of a sediment P speciation scheme for analyzing redox-sensitive P in runoff without sample preconcentration. The extraction comprised the addition of bicarbonate (pH buffer) and dithionite (reducing agent) into a runoff sample, 15 min of gentle shaking, filtration, and sample digestion. The samples were greatly reduced (Eh < -200 mV), and Fe and P were solubilized, but Al solubility was not increased. Phosphorus release from rock phosphates (calcium phosphates) was greater in the BD extraction than in water or bicarbonate solution, although no more than 0.2% of the total P was released. For runoff from a very fine Typic Cryaquept, the particulate phosphorus (PP) versus BD-PP relationship was linear up to a PP concentration of about 1.0 mg L(-1), but over the whole PP range studied (up to 2.6 mg L(-1)) somewhat better described by an exponential equation (BD-PP = 0.297 x PP(0.766); r2 = 0.91, n = 79). The minimum detectable value given by the method was relatively low, 0.023 mg L(-1), but reproducibility varied, with the coefficient of variation for 10 samples analyzed with 5 replicates ranging from 1.8 to 28.5%. Considering the variable reproducibility of the results and the lack of suitable reference material, the method needs further refinement and testing if it is to be used for quantitative determination of redox-sensitive P in runoff.  相似文献   
7.
8.
Coastal eutrophication is expected to increase due to expanding and intensifying agriculture which causes a large amount of soil-associated P to be transported into aquatic systems. We performed anaerobic long-term incubations on field soil to mimic the conditions that eroded soil encounters in brackish sediments. The release of P from soil increased with the amount of labile organic C (acetate) addition and decreased with the soil/solution ratio. We deduce that in less-productive brackish systems, microbial Fe reduction allows for the maintenance of the coupled cycling of Fe and P and restricts the amount of P entering the oxic water. In more eutrophic systems, the formation of Fe sulfides as a result of SO4 reduction inactivates Fe, and leads to a higher release of P, thus generating an adverse feedback effect. The dependence of the fate of soil-bound Fe and P on the trophic status of the receiving water should be recognized in eutrophication management.  相似文献   
9.
The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities.  相似文献   
10.
Conversion of dissolved P by ferric sulfate into a particulate form sparingly available to algae was studied in 15 ditches in Finland using stand-alone dispensers for ferric sulfate administration. Ferric sulfate typically converted 60–70 % of dissolved P into iron-associated form, a process which required 250–650 kg per kg dissolved P. Mean cost was 160 EUR per kg P converted (range 20–400 EUR kg?1). The costs were lowest at sites characterized by high dissolved P concentrations and small catchment area. At best, the treatment was efficient and cost-effective, but to limit the costs and the risks, ferric sulfate dispensers should only be installed in small critical source areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号