首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
综合类   3篇
污染及防治   4篇
社会与环境   2篇
  2011年   1篇
  2008年   1篇
  2005年   2篇
  2004年   4篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Since sewage discharges can significantly contribute to the contaminant loadings in coastal areas, it is important to identify sources, pathways and environmental sinks. Sterol and fatty alcohol biomarkers were quantified in source materials, suspended sediments and settling matter from the Ria Formosa Lagoon. Simple ratios between key biomarkers including 5beta-coprostanol, cholesterol and epi-coprostanol were able to identify the sewage sources and effected deposition sites. Multivariate methods (PCA) were used to identify co-varying sites. PLS analysis using the sewage discharge as the signature indicated approximately 25% of the variance in the sites could be predicted by the sewage signature. A new source of sewage derived organic matter was found with a high sewage predictable signature. The suspended sediments had relatively low sewage signatures as the material was diluted with other organic matter from in situ production. From a management viewpoint, PLS provides a useful tool in identifying the pathways and accumulation sites for such contaminants.  相似文献   
2.
The effect of climatic warming on the dehardening potential of bilberry (Vaccinium myrtillus L.) in a northern boreal environment (65 degrees N) was studied. Natural stands of bilberry were heated artificially in winter. No reference point for the heating was set, since the purpose was to follow the fluctuations in ambient air temperatures. These were 2-3 degrees C higher in the heated plots than in the control plots from October to May. Frost resistance (LT50) and the pH of cell effusate were monitored throughout. Bud phenology was assessed in May and related to various biochemical analyses, including glucose, fructose, sucrose, starch and total and reduced glutathione. Frost resistance started to decrease earlier in the heated plants, as did the pH of the cell effusate. Bud phenology was in accordance with the LT50 and pH results, since new growth had emerged in the heated plants by the beginning of May, when the controls still displayed dormancy. Concentrations of glucose, fructose and sucrose were significantly lower in the heated bilberries while concentrations of starch were higher. The heated plants also exhibited the lowest glutathione concentrations, but the difference was only marginal. The redox state of glutathione showed no difference between the treatments. The results suggest that a small elevation in air temperature can accelerate dehardening in the bilberry. It is thus concluded that climatic warming may entail a real risk of early dehardening and further frost damage for the bilberry.  相似文献   
3.
The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in super-dominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well adapted to the Arctic's climate: some can metabolize at temperatures down to -39 degrees C. Cyanobacteria and algae have a wide range of adaptive strategies that allow them to avoid, or at least minimize UV injury. Microorganisms can tolerate most environmental conditions and they have short generation times which can facilitate rapid adaptation to new environments. In contrast, Arctic plant and animal species are very likely to change their distributions rather than evolve significantly in response to warming.  相似文献   
4.
Both the farm-specific and regional costs of clean feeding as a countermeasure to reduce ingestion of contaminated grass when there is insufficient supply of other types of roughage were estimated for dairy farming in Finland in the first year after contamination. The cost estimation considered expenditures and revenues associated with milk production and were calculated using farm models developed for economic planning. A hypothetical contamination scenario was designed using RODOS models for atmospheric dispersion and transfer in terrestrial food chains. Costs for intervention after two similar hypothetical atmospheric dispersion and deposition scenarios in early June and in July were estimated. As a reference, the cost of complete replacement of fodder throughout the area was also calculated. Feed substitution costs were higher in June than in July, due to the availability of some harvested silage in the later scenario. In the first case, the additional costs of clean feeding amounted to one-fifth of the normal production costs. Effective advisory/support services, available to farmers, can substantially improve the implementation of countermeasures. However, high costs and insufficient sources of clean feed would restrict the use of clean feeding as the sole countermeasure after serious contamination during the growing season.  相似文献   
5.
环境变化背景下北极生物的多样性、分布及其适应性   总被引:2,自引:0,他引:2  
生物个体是对气候变化和紫外线B(UV-B)辐射变化产生反应的基础,而且这种反应会在各种时间尺度上发生.北极地区的动物、植物以及微生物种类的多样性从表面上看是低的,而且从北方针叶林到极地荒漠逐渐减少,但其原始物种却很丰富.与这种物种多样性随纬向梯度减少的趋势相反,一些空间分布范围很广的单一优势物种的优势度则呈增长趋势.全球气候变暖可能会减少该地区的物种多样性,并限制到这些物种的分布范围,尤其是在该地区生物分布的北部边缘,一些极地特有的动物和植物种类会面临着灭绝的危险.最有可能侵入苔原地带的物种是那些目前生存在极地外缘的北方地区生物.许多植物都具有自身的特征使它们能够在以下环境中生存短暂的无冰雪覆盖的生长季节,低的太阳高度角,永久冻结地带及低的土壤温度,贫乏的养分获取条件以及极少的物理扰动.以上这些特征有些可能会限制当地物种对气候变暖的反应,但其最主要的因素是这些物种与那些潜在的入侵物种相比缺乏竞争能力.北极地区陆生动物拥有许多适应特性,这使它们能够适应北极地区剧烈的温度变化.许多动物通过冬眠或迁移来逃避极地地区的恶劣天气和资源短缺.北极地区动物生存的生物环境则相对简单几乎没有天敌、竞争者、疾病、寄生生物,但同时食物资源也很短缺.极地陆生动物可能对由气候变化带来的温暖而干旱的夏季非常不适应,这种变化将会影响到动物的迁移路线、途中栖息地,并会改变冬季积雪的状况和冻融的循环过程.气候变化还会改变动物繁殖和发育的季节,并会引来新的竞争者、捕食者、寄生生物以及疾病等.极地微生物也能很好地适应该地区的气候一些微生物甚至在-39℃的低温下还能进行代谢活动.蓝藻细菌和藻类生物有着很广泛的适应策略,这能够使它们避免(至少可以减少)紫外线的伤害.微生物能够忍受许多环境条件,而且其生长周期很短,这些特点将使它们能很快适应新的生存环境.与此形成对比的是,极地植物和动物很可能通过改变其分布范围而不是积极的生物进化来适应环境的变暖.  相似文献   
6.
控制实验表明,不同物种对每个环境因子变化变量产生的响应也存在着差异.植物往往对营养元素的变化反应最为强烈,尤其是氮素的增加.夏季增温实验表明,木本植物对温度的升高表现出了积极的响应,而地衣、苔藓类植物的丰富度却因增温而降低.物种对增温的响应主要受水分有效性和雪覆盖程度控制.在气候保持湿润的情况下,伴随着夏季温度的升高,许多无脊椎动物种群的数量都有所增加.实验表明,CO2浓度和紫外线B(UV-B)辐射的增加对植物和动物影响较小,但是,一些微生物和真菌却对紫外线B辐射的增加非常敏感,甚至可能会因此产生一些诱导突变而引起流行传染病的爆发.苔原土壤的加温、CO2浓度的升高以及矿物质营养的改善一般都会增加微生物的活动.在温带气候中,藻类往往比蓝藻细菌更占优势.冬季结冰-解冻过程的增加会导致冻壳的形成,从而会大大降低许多陆生动物的冬季存活率,改变这些动物群体的动态过程.厚的积雪会使驯鹿等植食性动物很难采食到雪下的草类植物,同时也不利于其逃避食肉动物的追捕.而无雪期的提前到来则可能会加速植物的生长.物种对气候变化的响应最初可能出现在亚种这一水平上一个具有很高遗传/群系多样性的北极植物或动物物种,演化历史已经使其具有一种适应不同环境条件的能力,这将使它们能够很快适应未来的环境变化.本土知识(IK)、航空照片和卫星图像表明一些物种的分布已经发生了变化北极植被更加趋向灌木化,而且生长也更加旺盛;北极驯鹿的分布范围最近也发生了变化;一些原来在树线以南区域活动的害虫和鸟类也在北极被发现.与此相对应,大多数在北极地区进行繁殖鸟类的数量却都在下降.根据一些模型的预测,随着气候的变暖,苔原带鸟类的数量将会大幅度地下降.据物种-气候响应模型预测,由于受到气候变暖的影响,北极地区现有物种在未来的潜在分布范围都将大大缩小和向北退缩,而一些无脊椎动物和微生物则很可能会迅速向北扩展到北极地区.  相似文献   
7.
This paper discusses cross-border cooperation at the level of urban socio-economic systems. Worldwide, cross-border urban cooperation has in several cases produced socio-economic and political coherence supported by various joint programs and efforts. However, the degree of coherence varies and seldom creates socio-economically and politically tightly integrated "Twin- Cities" where the state border becomes highly transparent or obscure. Focusing on Finlan d and China, our aim is to identify whether the selected border towns represent coherent TwinCities or a more loose type of "paired border towns". The study uses an empirical examination of three Finnish towns (Helsinki, Tornio, Imatra) and their neighboring towns in Estonia, Sweden, and Russia as a benchmark. Then, a comparative study is made regarding three Chinese cross-border cities facing Russia, Vietnam and Kazakhstan. We highlight the differences in cross-border integration from the viewpoint of shared public sector programs, cross-border enterprise relocation and networking, and integrated social sector in terms of labor market, education and shopping area.  相似文献   
8.
Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.  相似文献   
9.
We studied the impact of seed mixtures (grass-clover, less competitive grass vs. meadow plant mixture) and mowing (annual mowing vs. no mowing) on the abundance of seed and insect food for farmland birds in set-aside in a long-term field experiment. In general, seed food was less affected by the treatments than insect food. The impact of seed mixture on the abundance of seed food was dependent on the study year: the highest level recorded in the first year, followed by a substantial decline in the following years. Mowing increased the biomass of seed food. The impact of treatments on insect food abundance differed between the total amount of insect food, and had significant interactions with year. Different insect groups dominated in each year as well as their response to the treatments. For the total amount, the meadow plant seed mixture appeared to be the most beneficial and a slight positive impact of mowing appeared in the last two years of the experiment. The results suggest that the value of set-asides in providing food differs according to food components and declines with increasing age of the set-aside.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号