首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   2篇
基础理论   4篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Myrmecophily provides various examples of how social structures can be overcome to exploit vast and well-protected resources. Ant nest beetles (Paussinae) are particularly well suited for ecological and evolutionary considerations in the context of association with ants because life habits within the subfamily range from free-living and predatory in basal taxa to obligatory myrmecophily in derived Paussini. Adult Paussini are accepted in the ant society, although parasitising the colony by preying on ant brood. Host species mainly belong to the ant families Myrmicinae and Formicinae, but at least several paussine genera are not host-specific. Morphological adaptations, such as special glands and associated tufts of hair (trichomes), characterise Paussini as typical myrmecophiles and lead to two different strategical types of body shape: while certain Paussini rely on the protective type with less exposed extremities, other genera access ant colonies using glandular secretions and trichomes (symphile type). We compare these adaptations with other taxonomic groups of insects by joining contemporary research and early sources and discuss the possibility of an attracting or appeasing effect of the secretion. Species that are ignored by their host ants might use chemical mimicry instead. Furthermore, vibrational signals may contribute to ant–beetle communication, and chemical signals have proven to play a role in host finding. The powerful defense chemistry of paussines as “bombardier beetles” is not used in contact with host ants. We attempt to trace the evolution of myrmecophily in paussines by reviewing important aspects of the association between paussine beetles and ants, i.e. morphological and potential chemical adaptations, life cycle, host specificity, alimentation, parasitism and sound production.
Stefanie F. GeiselhardtEmail:
  相似文献   
2.
Tarsal substrate adhesion in insects is based on the effect of a thin film of liquid in the contact zone, which is deposited as droplets on the surface an insect has walked on, but as yet, little is known about the chemical composition of the liquid. In the present study, interference reflection microscopical images of the tarsal contact and footprints of Gastrophysa viridula (Coleoptera: Chrysomelidae) are depicted and the chemical composition of tarsal liquids and cuticular components are investigated by means of solid-phase microextraction and solvent extraction of whole beetles and footprints. Based on this comparative methodical approach, we are first to provide evidence from direct sampling for the chemical congruence of cuticular lipids and tarsal liquid in beetles. Furthermore, differences resulting from the applied sampling techniques are assessed and advantages of the respective methods are discussed.  相似文献   
3.
The chemical composition of the defensive secretions of 52 species from 15 genera of the tenebrionid subtribe Stizopina was analyzed. The secretions of all species contained 1,4-benzoquinones, 1-alkenes, and monoterpene hydrocarbons, only one species was lacking the latter. Methyl- and ethyl-1,4-benzoquinone were ubiquitous, mostly accompanied by smaller amounts of 1,4-benzoquinone as well as isopropyl- and propyl-1,4-benzoquinone. 1-Alkenes were dominated by 1-undecene with varying admixtures of other 1-alkenes. The monoterpene hydrocarbons always consisted of a mixture of α-pinene, camphene, β-pinene and limonene, but also p-cymene, α-terpinene or α-phellandrene were found in some species. Furthermore, some species synthesized additional compounds such as phenols, ketones, 2,5-dihydroxy-6-methylbenzoate, 2-hydroxy-4-methoxyacetophenone and naphthoquinones. Bioassays showed that the defensive secretion co-functioned as an aggregation pheromone in the subtribe Stizopina. All nine tested species from six genera were attracted to defensive secretion of Stizopina species, but they did not distinguish between defensive secretions of different Stizopina species. This lack of discrimination might be the initial step for the formation of interspecific aggregations and the evolution of cleptoparasitism within the Stizopina.  相似文献   
4.
Males of the genus Parastizopus (Coleoptera: Tenebrionidae) exhibit a special pheromone-emitting behaviour. They do a headstand, expose the aedeagus and remain in this posture for a few seconds. The pheromone emitted by P. transgariepinus was collected by solid-phase micro-extraction (100 microm polydimethylsiloxane fibre) and identified as 1-tridecene by gas chromatography/mass spectrometry. Presumably, this compound originates from the aedeagal gland, a special feature in Parastizopus, as 1-tridecene is the main compound in the gland reservoirs (23.6+/-3.8%), accompanied by various less volatile fatty acid esters (25.2+/-2.0%) and hydrocarbons (51.2+/-5.7%). 1-Tridecene is also part of the pygidial defensive secretion of both sexes, together with other 1-alkenes, monoterpene hydrocarbons and 1,4-benzoquinones, but as none of these other compounds was detected during calling, the pygidial gland could be ruled out as pheromone source. Extracts of the aedeagal gland reservoirs and the pygidial defensive secretion contained comparable amounts of 1-tridecene, 1.24+/-0.41 and 1.88+/-0.54 microg/male, respectively. Chemo-orientation experiments using a servosphere showed that 1 microg of 1-tridecene was attractive to females but not to males.  相似文献   
5.
Summary. Breeding burrows of Parastizopus armaticeps armaticeps, a fossorial desert tenebrionid beetle, are cleptoparasitised by the closely related Eremostibes opacus. Gas chromatographic analyses show a high congruity of the cuticular hydrocarbons of both species. We compare these hydrocarbon patterns with those of four other Stizopina species and the Scaurini Herpiscius sommeri. In a bioassay, dummies treated with cuticular hydrocarbon extracts of E. opacus and the P. a. bifidus parasite E. bushmanicus were mostly ignored by P. a. armaticeps, whereas dummies with applied extracts of the remaining species were heavily attacked. We show that there is a correlation between agonistic behaviour of P. a. armaticeps towards the intruder and the chemical similarity of the cuticular hydrocarbons of the two species. Furthermore, we produced quantitatively modified hydrocarbon patterns of E. barbatus by changing the temperature at which this species was kept. The new 30 °C type was chemically similar to E. opacus, and was frequently ignored by P. a. armaticeps, whereas a reduction of the temperature to 20 °C only had minor effects on the hydrocarbon pattern. Furthermore, we show that the addition of one single component, heptacosane, to the cuticular hydrocarbon extract of E. opacus alters the host’s reaction. We discuss the role of cuticular hydrocarbons for the recognition of this host-parasite system and the relevance of quantitative characters in the hydrocarbon pattern for the discrimination of the host.  相似文献   
6.
Within beetles, those species that are adapted to life on plants have developed widened tarsi with specialised hairy attachment structures. The capability to adhere to smooth surfaces is based on a liquid film on the surface of these structures, the composition of which is similar to the cuticular lipids. By means of a cluster analysis based on chemical similarities between samples obtained from tarsi or elytra of 35 species using solid phase microextraction, the present study strongly suggests that this chemical congruence is a principle in beetles. This supports the idea of tarsal liquids being part of the cuticular lipid layer and contributes to the understanding of liquid-mediated attachment systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号