首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
废物处理   1篇
环保管理   1篇
综合类   3篇
基础理论   3篇
污染及防治   13篇
评价与监测   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2007年   4篇
  2005年   1篇
  1940年   1篇
  1939年   1篇
  1932年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
We present a framework for evaluating and communicating effects of human activity on water quality in managed forests. The framework is based on the following processes: atmospheric deposition, weathering, accumulation, recirculation and flux. Impairments to water quality are characterized in terms of their extent, longevity and frequency. Impacts are communicated using a “traffic lights” metaphor for characterizing severity of water quality impairments arising from forestry and other anthropogenic pressures. The most serious impairments to water quality in managed boreal forests include (i) forestry activities causing excessive sediment mobilization and extirpation of aquatic species and (ii) other anthropogenic pressures caused by long-range transport of mercury and acidifying pollutants. The framework and tool presented here can help evaluate, summarize and communicate the most important issues in circumstances where land management and other anthropogenic pressures combine to impair water quality and may also assist in implementing the “polluter pays” principle.  相似文献   
2.
Land use is known to alter the nature of land–water interactions, but the potential effects of widespread forest management on headwaters in boreal regions remain poorly understood. We evaluated the importance of catchment land use, land cover, and local stream variables for macroinvertebrate community and functional trait diversity in 18 boreal headwater streams. Variation in macroinvertebrate metrics was often best explained by in-stream variables, primarily water chemistry (e.g. pH). However, variation in stream variables was, in turn, significantly associated with catchment-scale forestry land use. More specifically, streams running through catchments that were dominated by young (11–50 years) forests had higher pH, greater organic matter standing stock, higher abundance of aquatic moss, and the highest macroinvertebrate diversity, compared to streams running through recently clear-cut and old forests. This indicates that catchment-scale forest management can modify in-stream habitat conditions with effects on stream macroinvertebrate communities and that characteristics of younger forests may promote conditions that benefit headwater biodiversity.  相似文献   
3.
Hasselquist  Eliza Maher  Mancheva  Irina  Eckerberg  Katarina  Laudon  Hjalmar 《Ambio》2020,49(7):1341-1351
Ambio - Improving water quality has become an important environmental issue, spurred in part by the Water Framework Directive. However, the relationship of policy change with forest water...  相似文献   
4.
Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree–mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.  相似文献   
5.
The aim of this study was to explore how atmospherically derived soil pollution is affected by environmental processes at two typical boreal catchment landscape type settings: wetlands and forested areas. Measurements of hydrophobic organic compounds (HOCs) in forest soil and peat from an oligotrophic mire at various depths were performed at a remote boreal catchment in northern Sweden. HOCs in peat were evenly distributed throughout the body of the mire while levels of HOCs in the forest soil increased with increased amount of organic matter. Evaluation of HOC composition by principal component analysis (PCA) showed distinct differences between surface soils and deeper soil and peat samples. This was attributed to vertical transport, degradation and/or shifting sources over time. The calculated net vertical transport differed between surface layers (0.3%) and deeper soils (8.0%), suggesting that vertical transport conditions and processes differ in the deeper layers compared to the surface layers.  相似文献   
6.
7.
Bergvall M  Grip H  Sjöström J  Laudon H 《Ambio》2007,36(6):512-519
Contaminant transport is generally considered to be a key factor when assessing and classifying the environmental risk of polluted areas. In the study presented here, a steady-state approach was applied to obtain estimates of the transit time and concentration of the pesticide metabolite BAM (2,6-dichlorobenzoamide) at a site where it is contaminating a municipal drinking water supply. A Monte Carlo simulation technique was used to quantify the uncertainty of the results and to evaluate the sensitivity of the used parameters. The adopted approach yielded an estimated median transit time of 10 y for the BAM transport from the polluted site to the water supply. Soil organic carbon content in the unsaturated zone and the hydraulic conductivity in the saturated zone explained 44% and 23% of the uncertainty in the transit time estimate, respectively. The sensitivity analysis showed that the dilution factor due to regional groundwater flow and the soil organic carbon content at the polluted site explained 53% and 31% of the uncertainty of concentration estimates, respectively. In conclusion, the adopted steady-state approach can be used to obtain reliable first estimates of transit time and concentration, but to improve concentration predictions of degrading contaminants, a dynamic model is probably required.  相似文献   
8.
9.
A laboratory-scale reactor system was built and operated to demonstrate the feasibility of catalytically reacting carbon dioxide (CO2) with renewably-generated hydrogen (H2) to produce methane (CH4) according to the Sabatier reaction: CO2 + 4H2  CH4 + 2H2O. A cylindrical reaction vessel packed with a commercial methanation catalyst (Haldor Topsøe PK-7R) was used. Renewable H2 produced by electrolysis of water (from solar- and wind-generated electricity) was fed into the reactor along with a custom blend of 2% CO2 in N2, meant to represent a synthetic exhaust mixture. Reaction conditions of temperature, flow rates, and gas mixing ratios were varied to determine optimum performance. The extent of reaction was monitored by real-time measurement of CO2 and CH4. Maximum conversion of CO2 occurred at 300–350 °C. Approximately 60% conversion of CO2 was realized at a space velocity of about 10,000 h?1 with a molar ratio of H2/CO2 of 4/1. Somewhat higher total CO2 conversion was possible by increasing the H2/CO2 ratio, but the most efficient use of available H2 occurs at a lower H2/CO2 ratio.  相似文献   
10.
Protecting water quality in forested regions is increasingly important as pressures from land-use, long-range transport of air pollutants, and climate change intensify. Maintaining forest industry without jeopardizing sustainability of surface water quality therefore requires new tools and approaches. Here, we show how forest management can be optimized by incorporating landscape sensitivity and hydrological connectivity into a framework that promotes the protection of water quality. We discuss how this approach can be operationalized into a hydromapping tool to support forestry operations that minimize water quality impacts. We specifically focus on how hydromapping can be used to support three fundamental aspects of land management planning including how to (i) locate areas where different forestry practices can be conducted with minimal water quality impact; (ii) guide the off-road driving of forestry machines to minimize soil damage; and (iii) optimize the design of riparian buffer zones. While this work has a boreal perspective, these concepts and approaches have broad-scale applicability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号