首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
综合类   1篇
污染及防治   1篇
社会与环境   1篇
  2018年   2篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.

Yearly, huge amounts of sock refuse are discarded into the environment. Socks contain many molecules, and worn ones, which are rich in smell-causing bacteria, have a strong influence on animals’ behaviors. But the impacts of sock odor on the oviposition behavior of dengue vectors are unknown. We assessed whether Aedes albopictus changes its oviposition activity in response to the presence of used socks extract (USEx) in potential breeding grounds, using choice and no-choice bioassays (NCB). When furnished even chances to oviposit in two sites holding USEx and two others containing water (control), Ae. albopictus deposited significantly less eggs in USEx than in water sites. A similar pattern of oviposition preference was also observed when there were more oviposition options in water. When there were greater oviposition opportunities in USEx sites, Ae. albopictus oviposited preferentially in water. Females laid significantly more eggs during the NCB involving water than USEx. Also, significantly more mature eggs were retained by females in the NCB with USEx than in that with water. These observations strongly suggest the presence of molecules with either repellent or deterrent activities against Ae. albopictus females and provide an impetus to advocate the integration of used socks in dengue control programs. Such applications could be a realistic end-of-life recourse to reroute this waste from landfills.

  相似文献   
2.
Prazosin (PRZ) and levonorgestrel (LNG) are widely used as an anti-disease drugs due to their biological activity in the human body. The frequent detection of these compounds in water samples requires alternative technologies for the removal of both compounds. After electrochemical degradation of PRZ and LNG, the parent compounds could be completely removed after treatment, but the identification and characterization of by-products are necessary as well. In this study, the effects of NaCl concentration and applied voltage were investigated during the electrochemical degradation process. The results revealed that the increase of NaCl concentration and applied voltage could promote the generation of hypochlorite OCl? and then enhance the degradation of PRZ and LNG. After initial study, 6 V and 0.2 g NaCl were selected for further experiments (96% and 99% removal of PRZ and LNG after 40 min, respectively). Energy consumption was also evaluated and calculated for PRZ and LNG at 3, 6 and 8 V. Solid phase extraction (SPE) method plays an important role in enhancing the detection limit of by-products. Furthermore, characterization and identification of chlorinated and non-chlorinated by-products were conducted using an accurate liquid chromatography-time of flight/mass spectrometry LC-TOF/MS instrument. The monitoring of products during the electrochemical degradation process was performed at 6 V and 0.2 g NaCl in a 50 mL solution. The results indicated that two chlorinated products were formed during the electrochemical process. The toxicity of by-products toward E. coli bacteria was investigated at 37°C and 20 hr incubation time.  相似文献   
3.
The purpose of this study is to examine the critical success factors of sustainable manufacturing practices (SMPs) in Malaysian automotive industry. The questionnaires were designed and distributed to the 50 respondents. The pilot study sample consists of 26 respondents from 50 questionnaires, with an average response rate of 52%. The results of reliability analysis show that social responsibility is critical factor influencing the direct SMPs implementation success. By implementing SMPs in Malaysian automotive industry, it can assist company to improve the quality of management. Thus, this study recommends that the future research explore the influence of SMPs on sustainable performance in Malaysian automotive industry.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号