首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
环保管理   15篇
综合类   8篇
基础理论   5篇
污染及防治   11篇
评价与监测   2篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   5篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1988年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1960年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Collaborative monitoring over broad scales and levels of ecological organization can inform conservation efforts necessary to address the contemporary biodiversity crisis. An important challenge to collaborative monitoring is motivating local engagement with enough buy-in from stakeholders while providing adequate top-down direction for scientific rigor, quality control, and coordination. Collaborative monitoring must reconcile this inherent tension between top-down control and bottom-up engagement. Highly mobile and cryptic taxa, such as bats, present a particularly acute challenge. Given their scale of movement, complex life histories, and rapidly expanding threats, understanding population trends of bats requires coordinated broad-scale collaborative monitoring. The North American Bat Monitoring Program (NABat) reconciles top-down, bottom-up tension with a hierarchical master sample survey design, integrated data analysis, dynamic data curation, regional monitoring hubs, and knowledge delivery through web-based infrastructure. NABat supports collaborative monitoring across spatial and organizational scales and the full annual lifecycle of bats.  相似文献   
2.
The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p < 0.001). RUSLE2-erosion estimates were highly correlated with USLE estimates (r = 0.87; p < 001), so the method of implementing the USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.  相似文献   
3.
The annual cycles of hydrogen peroxide (H2O2) and methylhydroperoxide (MHP) have been investigated at a remote site in Antarctica in order to study seasonal variations as well as chemical processes in the troposphere. The measurements have been performed from March 1997 to January 1998 and in February 1999 at the German Antarctic research station Neumayer which is located at 70°39′S, 8°15′W. The obtained time series for hydrogen peroxide and methylhydroperoxide in near-surface air represents the first all-year measurements in Antarctica and indicates clearly the occurrence of seasonal variations. During polar night mean values of 0.054±0.046 ppbv (range<0.03–0.11 ppbv) for hydrogen peroxide and 0.089±0.052 ppbv (range<0.05–0.14 ppbv) for methylhydroperoxide were detected. At the sunlit period higher Mixing ratios were found, 0.20±0.13 ppbv (range<0.03–0.91 ppbv) for hydrogen peroxide and 0.19±0.10 ppbv (range<0.05–0.89 ppbv) for methylhydroperoxide. Occasional long-range transport of air masses from mid-latitudes caused enhanced peroxide concentrations at polar night. During the period of stratospheric ozone depletion we observed peroxide mixing ratios comparable to typical winter levels.  相似文献   
4.
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1.  相似文献   
5.
Species distribution models (SDMs) are often used in conservation planning, but their utility can be improved by assessing the relationships between environmental and species response variables. We constructed SDMs for 30 stream fishes of Maryland, USA, using watershed attributes as environmental variables and presence/absence as species responses. SDMs showed substantial agreement between observed and predicted values for 17 species. Most important variables were natural attributes (e.g., ecoregion, watershed area, latitude/longitude); land cover (e.g., %impervious, %row crop) was important for three species. Focused analyses on four representative species (central stoneroller, creek chub, largemouth bass, and white sucker) showed the probability of presence of each species increased non-linearly with watershed area. For these species, SDMs built to predict absent, low, and high densities were similar to presence/absence predictions but provided probable locations of high densities (e.g., probability of high-density creek chub decreased rapidly with watershed area). We applied SDMs to predict suitability of watersheds within the study area for each species. Maps of suitability and the environmental and species response relationships can help develop better management plans.  相似文献   
6.
The pH of Salmonella pre-enrichment media can become acidic (pH 4.0–5.0) when feeds/ingredients are incubated for 24?h. Salmonella in feed that have been stressed by heat and desiccation exhibit different pH tolerances than non-stressed cultures. Acidic conditions can result in cell injury/death and affect biochemical pathways. In this study, eight serotypes of Salmonella were grown in sterile meat and bone meal that was subjected to desiccation and heat stress. Cultures of non-stressed and stressed isolates were subsequently exposed to acidic pH from 4.0 to 7.0 in 0.5?pH increments (3 replicates/pH increment) in citrate buffer. At 6 and 24?h, serial dilutions were plated in duplicate on XLT-4 (xylose lysine tergitol-4) agar. Four serotypes showed an impaired ability to decarboxylate lysine on XLT-4. This inability to decarboxylate lysine was dependent on isolate, stress status, and incubation time. When the isolates’ ability to decarboxylate lysine was examined using biochemical tests, cultures were found to be able to decarboxylate lysine with the exception of S. Infantis. This suggests that XLT-4 contains a biochemical stressor(s) which affects the rate of decarboxylation by these Salmonella. These results suggest that acidic conditions may influence the detection and confirmation of Salmonella in feed.  相似文献   
7.
The trend of rising ozone concentrations in forest ecosystems and the phytotoxicity of ozone demand a realistic risk assessment according to an internationally accepted and flux-based quality standard. Ozone fluxes within the canopy are influenced by chemical gas-phase reactions with nitrogen oxide and biogenic hydrocarbons and by surface deposition processes. Therefore, a differentiation of the ozone flux within the canopy is needed between stomatal uptake and other transport pathways. The Eddy Covariance technique is the method of choice for the determination of trace gas fluxes relevant for ozone chemistry. This method is also used for stomatal conductance measurements based on evapotranspiration fluxes and for emission measurements of biogenic hydrocarbons by PTR-MS. Although considerably research efforts were directed to canopy measurements in recent years, the underlying processes are not fully understood yet. Thus, major differences occur in the ratios of stomatal ozone uptake, non-stomatal deposition and gas-phase chemistry between different studies. Furthermore, the vertical concentration gradients within the canopy measured at several forest sites are rather inconsistent and the existing deposition models do rarely account for chemical transformation and detoxification processes. Only a simultaneous measurement of all photochemically relevant trace gases, plant physiological parameters at different sites and forest species over entire vegetation periods, and model parameterization according to the measurement results from the experimental sites will contribute to the clarification of the canopy processes and will ensure realistic risk assessments.  相似文献   
8.
Levels and patterns of C1-C4/C9 organic nitrates were measured for the first time in Antarctica. The sampling was done by adsorptive enrichment on Tenax TA followed by thermodesorption cold-trap high resolution capillary gas chromatography with electron capture detection. 2-70 1 air on-column have been analyzed this way. C1-C9 alkyl mononitrates, C2-C4 alkyl dinitrates, C2-C4 hydroxy alkyl nitrates, and halocarbons could be identified in air samples collected near the German Neumayer Research Station, Antarctica, in February 1999. Volatile biogenic and anthropogenic halocarbons were used to assess the origin of the air parcels analyzed. The average concentration measured for sigmaC2-C6 alkyl nitrates was in the range of 9.2 +/- 1.8 ppt(v), while the sum of the mixing ratios of six C2-C4 hydroxy alkyl nitrates was in the range of 1.1 +/- 0.2 ppt(v). Moreover, C2-C4 alkyl dinitrates were found at levels near the detection limit of 0.1-0.5 ppt(v). The concentrations of organic nitrates found in Antarctic air represent ultimate baseline levels due to chemical and physical loss processes during long-range transport in the air. The South Atlantic and the Antarctic Ocean as a general secondary source for organic nitrates in terms of an air/sea exchange equilibrium has to be evaluated yet, but it seems logical. Our results confirm the common assumption that there are no biogenic marine sources of C2-C9 organonitrates. We have found a level of > 80 ppt(v) for methyl nitrate. This level if it can be confirmed in a systematic survey requires a strong biogenic source of methyl nitrate in the Antarctic Ocean.  相似文献   
9.
10.
Indices of biotic integrity have become an established tool to quantify the condition of small non-tidal streams and their watersheds. To investigate the effects of watershed characteristics on stream biological condition, we present a new technique for regressing IBIs on watershed-specific explanatory variables. Since IBIs are typically evaluated on an ordinal scale, our method is based on the proportional odds model for ordinal outcomes. To avoid overfitting, we do not use classical maximum likelihood estimation but a component-wise functional gradient boosting approach. Because component-wise gradient boosting has an intrinsic mechanism for variable selection and model choice, determinants of biotic integrity can be identified. In addition, the method offers a relatively simple way to account for spatial correlation in ecological data. An analysis of the Maryland Biological Streams Survey shows that nonlinear effects of predictor variables on stream condition can be quantified while, in addition, accurate predictions of biological condition at unsurveyed locations are obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号