首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
安全科学   3篇
环保管理   6篇
综合类   14篇
基础理论   8篇
污染及防治   8篇
社会与环境   2篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1983年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1962年   1篇
  1960年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有41条查询结果,搜索用时 203 毫秒
1.
2.
A definitional component of organizational climate is the focus on employees' shared perceptions of the focal climate domain. To operationalize the notion of sharedness, researchers typically aggregate employees' domain‐specific climate perceptions to a higher level and justify this aggregation using quantitative indices of agreement. In the current paper, I argue that although accounting for sharedness among employees can provide some valuable insight, our overreliance on sharedness obscures some of the very organizational phenomena of interest. I discuss this issue by focusing on four costs of making unfounded assumptions regarding sharedness: (a) Aggregation assumes individual differences are a function of random error; (b) aggregation assumes that social situations are uniform across employees; (c) aggregation assumes that the unit of analysis is clear‐cut; and (d) aggregation assumes the group mean is meaningful. I argue that researchers carefully need to weigh the costs of violating these assumptions against the expected benefits of aggregating employees' climate perceptions, recognizing that sometimes employees' perceptions (i.e., psychological climate) might provide greater insight into phenomena of interest. Although I discuss these costs within the context of organizational climate research, these arguments apply to other research areas where individual perceptions are aggregated (e.g., research on leadership and teams).  相似文献   
3.
Sediment and phosphorus (P) transport from the Minnesota River Basin to Lake Pepin on the upper Mississippi River has garnered much attention in recent years. However, there is lack of data on the extent of sediment and P contributions from riverbanks vis-à-vis uplands and ravines. Using two light detection and ranging (lidar) data sets taken in 2005 and 2009, a study was undertaken to quantify sediment and associated P losses from riverbanks in Blue Earth County, Minnesota. Volume change in river valleys as a result of bank erosion amounted to 1.71 million m over 4 yr. Volume change closely followed the trend: the Blue Earth River > the Minnesota River at the county's northern edge > the Le Sueur River > the Maple River > the Watonwan River > the Big Cobb River > Perch Creek > Little Cobb River. Using fine sediment content (silt + clay) and bulk density of 37 bank samples representing three parent materials, we estimate bank erosion contributions of 48 to 79% of the measured total suspended solids at the mouth of the Blue Earth and the Le Sueur rivers. Corresponding soluble P and total P contributions ranged from 0.13 to 0.20% and 40 to 49%, respectively. Although tall banks (>3 m high) accounted for 33% of the total length and 63% of the total area, they accounted for 75% of the volume change in river valleys. We conclude that multitemporal lidar data sets are useful in estimating bank erosion and associated P contributions over large scales, and for riverbanks that are not readily accessible for conventional surveying equipment.  相似文献   
4.
Abstract: I compared the endemism of four plant groups (Araceae, Bromeliaceae, Palmae, Pteridophyta) along gradients of increasing anthropogenic forest disturbance, from undisturbed mature forest to disturbed forest (logged, grazed, or burned), secondary forest, secondary scrub, and finally pasture, at 16 sites in the Bolivian Andes. I measured endemism as the mean inverse range size (number of 1° cells) of all species per study group encountered in each habitat and site. Overall, endemism was significantly higher in disturbed forest than in mature forest, but it declined in more strongly disturbed habitats. To explain the relationship of range size to habitat disturbance, I propose that endemic species are somewhat competitively inferior to other co-occurring taxa, limited in their ability to establish and maintain new populations following dispersal and thus to expand their ranges. Within their established ranges, endemic species depend on natural habitat disturbances to prevent their competitive exclusion by other species, so they profit from a certain level of anthropogenic disturbance. This pattern and the explanatory hypotheses should be subjected to critical evaluation. Although the pattern does not apply to every endemic tropical plant species, it indicates that conservation of part of the endemic tropical forest flora may be achieved in forest areas subject to sustainable forest use without the need to completely exclude human activities.  相似文献   
5.
Silvicultural guidelines are presented for the management of intermountain Douglas-fir (Pseudotsuga menziesii) stands for sawtimber production and goshawk (Accipiter gentilis) nesting habitat in the northern Rocky Mountains. Data from 14 goshawk nest stands in Douglas-fir forests on the Targhee National Forest in Idaho (Patla 1991) were used to characterize the range of stand conditions considered suitable for goshawk nesting. A density management regime is presented using Reineke's stand density index that includes a technical rotation designed to produce sawlogs with a single commercial thinning. On average timber-growing sites, stands reach goshawk habitat suitability when site height is 25 m at age 75 and provide 65 years of goshawk nesting habitat until the final harvest at age 140. Approximately 1320 m3/ha are harvested over the rotation. On higher-quality sites, rotation length declines from 140 to 85 years, of which roughly 35 years are suitable for goshawk nesting.  相似文献   
6.
The BIOMASS Theme 1 project has developed a methodology for the logical and defensible construction of 'assessment biospheres': mathematical representations of biospheres used in the total system performance assessment of radioactive waste disposal. The BIOMASS Methodology provides a systematic approach to decision making, including decisions on how to address biosphere change. The BIOMASS Methodology was developed through consultation and collaboration with many relevant organisations, including regulators, operators and a variety of independent experts. It has been developed to be practical and to be consistent with recommendations from ICRP and IAEA on radiation protection in the context of the disposal of long-lived solid radioactive wastes. The five main steps in the methodology are described in this paper. The importance of a clear assessment context, to clarify intentions and to support a coherent biosphere assessment process within an overall repository performance assessment, is strongly emphasised. A well described assessment context is an important tool for ensuring consistency across the performance assessment as a whole. The use of interaction matrices has been found to be helpful in clarifying the interactions between different habitats within the biosphere system and the significant radionuclide transfer pathways within the biosphere system. Matrices also provide a useful means of checking for consistency.  相似文献   
7.
The quality of climate models has largely been overlooked as a possible source of uncertainty that may affect the outcomes of species distribution models, especially in the tropics, where comparatively few climatic stations are available. We compared the geographical discrepancies and potential conservation implications of using two different climate models (Saga and Worldclim) in combination with the species modelling approach Maxent in Bolivia. We estimated ranges of selected bird and fern species biogeographically restricted to either humid montane forest of the northern Bolivian Andes or seasonal dry tropical forests (in the Andes and southern lowlands). Saga and Worldclim predicted roughly similar climate patterns of temperature that were significantly correlated. Precipitation layers of both climate models were also roughly similar, but showed important differences. Species ranges estimated with Worldclim and Saga likewise produced different results. Ranges of species endemic to humid montane forests estimated with Saga had higher AUC (Area under the curve) values than those estimated with Worldclim, which for example predicted the occurrence of humid montane forest bird species near Lake Titicaca, an area that is clearly unsuitable for these species. Likewise, Worldclim overpredicted the occurrence of fern and bird species in the lowlands of the Chapare region and well south of the Andean Elbow, where more seasonal biomes occur. By contrast, Saga predictions were coherent with the known distribution of humid montane forests in the northern Bolivian Andes. Estimated ranges of species endemic to seasonal dry tropical forests predicted with Saga and Worldclim were not statistically different in most cases. However, detailed comparisons revealed that Saga was able to distinguish fragments of seasonal dry tropical forests in rain-shadow valleys of the northern Bolivian Andes, whereas Worldclim was not. These differences highlight the neglected influence of climate layers on modelling results and the importance of using the most accurate climate data available when modelling species distributions.  相似文献   
8.
To combat land degradation in the Central Rift Valley (CRV) of Ethiopia, farmers are of crucial importance. If farmers perceive land degradation as a problem, the chance that they invest in land management measures will be enhanced. This study presents farmers’ perceptions of land degradation and their investments in land management, and to what extent the latter are influenced by these perceptions. Water erosion and fertility depletion are taken as main indicators of land degradation, and the results show that farmers perceive an increase in both indicators over the last decade. They are aware of it and consider it as a problem. Nevertheless, farmers’ investments to control water erosion and soil fertility depletion are very limited in the CRV. Results also show that farmers’ awareness of both water erosion and soil fertility decline as a problem is not significantly associated with their investments in land management. Hence, even farmers who perceive land degradation on their fields and are concerned about its increase over the last decade do not significantly invest more in water erosion and soil fertility control measures than farmers who do not perceive these phenomena. Further research is needed to assess which other factors might influence farmers’ investments in land management, especially factors related to socioeconomic characteristics of farm households and plot characteristics which were not addressed by this study.  相似文献   
9.
A recent surge in attention devoted to the ecology of soil biota has prompted interest in quantifying similarities and differences between interactions occurring in above- and belowground communities. Furthermore, linkages that interconnect the dynamics of these two spatially distinct ecosystems are increasingly documented. We use a similar approach in the context of understanding plant defenses to herbivory, including how they are allocated between leaves and roots (constitutive defenses), and potential cross-system linkages (induced defenses). To explore these issues we utilized three different empirical approaches. First, we manipulated foliar and root herbivory on tobacco (Nicotiana tabacum) and measured changes in the secondary chemistry of above- and belowground tissues. Second, we reviewed published studies that compared levels of secondary chemistry between leaves and roots to determine how plants distribute putative defense chemicals across the above- and belowground systems. Last, we used meta-analysis to quantify the impact of induced responses across plant tissue types. In the tobacco system, leaf-chewing insects strongly induced higher levels of secondary metabolites in leaves but had no impact on root chemistry. Nematode root herbivores, however, elicited changes in both leaves and roots. Virtually all secondary chemicals measured were elevated in nematode-induced galls, whereas the impact of root herbivory on foliar chemistry was highly variable and depended on where chemicals were produced within the plant. Importantly, nematodes interfered with aboveground metabolites that have biosynthetic sites located in roots (e.g., nicotine) but had the opposite effect (i.e., nematodes elevated foliar expression) on chemicals produced in shoots (e.g., phenolics and terpenoids). Results from our literature review suggest that, overall, constitutive defense levels are extremely similar when comparing leaves with roots, although certain chemical classes (e.g., alkaloids, glucosinolates) are differentially allocated between above- and belowground parts. Based on a meta-analysis of induced defense studies we conclude that: (1) foliar induction generates strong responses in leaves, but much weaker responses in roots, and (2) root induction elicits responses of equal magnitude in both leaves and roots. We discuss the importance of this asymmetry and the paradox of cross-system induction in relation to optimal defense theory and interactions between above- and belowground herbivory.  相似文献   
10.
Environmental Science and Pollution Research - A large number of freshwater lakes around the world show recurring harmful algal blooms, particularly cyanobacterial blooms, that affect public health...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号