首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
废物处理   1篇
环保管理   3篇
综合类   3篇
基础理论   2篇
污染及防治   5篇
社会与环境   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2007年   3篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1992年   1篇
  1982年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
H. Sudo  M. Azeta 《Marine Biology》1992,113(2):211-217
Ontogenetic change of habitat depths of Nautilus pompilius in the Philippines (Tañon Strait) and Fiji is considered by comparing 18O/16O ratios in septa and cameral fluid of live-caught specimens and ambient sea-water. 18O values of cameral liquid become heavier with decreasing volume within a chamber, which may be due to isotopic fractionation during discharge across the siphuncular wall. All of the seven Philippine and Fiji specimens analyzed show a distinct change in 18O from light values in the first seven septa to heavier values in the succeeding septa. Two different isotopic temperature scales are obtained for the Fiji and Philippine populations, suggesting a differential vital effect of metabolism between them. Sightly light 18O values in Septa 1 to 7 and hatching at relatively high temperatures in aquaria both suggest that N. pompilius hatch at the shallowest depths within their inhabitable vertical range. Depths of postembryonic animals in the Philippines and Fiji waters estimated from the isotopic temperature-depth diagrams range from 120 to 160 m and from 440 to 520 m, respectively, both of which correlate well with capture records. More than several tens of small-scale 18O cycles are detected in the sequence of nacreous layers within the single septum of a submature Philippine specimen. This can be interpreted as reflecting daily vertical migration.  相似文献   
3.
Forests and soils are a major sink of carbon, and land use changes can affect the magnitude of above ground and below ground carbon stores and the net flux of carbon between the land and the atmosphere. Studies on methods for examining the future consequences of changes in patterns of land use change and carbon flux gains importance, as they provide different options for CO2 mitigation strategies. In this study, a simulation approach combining Markov chain processes and carbon pools for forests and soils has been implemented to study the carbon flows over a period of time. Markov chains have been computed by converting the land use change and forestry data of India from 1997 to 1999 into a matrix of conditional probabilities reflecting the changes from one class at time t to another class time t+1. Results from Markov modeling suggested Indian forests as a potential sink for 0.94 Gt carbon, with an increase in dense forest area of about 75.93 Mha and decrease of about 3.4 Mha and 5.0 Mha in open and scrub forests, if similar land use changes that occurred during 1997–1999 would continue. The limiting probabilities suggested 34.27 percent as dense forest, 6.90 as open forest, 0.4 percent mangrove forest, 0.1 percent scrub and 58 percent as non-forest area. Although Indian forests are found to be a potential carbon sink, analysis of results from transition probabilities for different years till 2050 suggests that, the forests will continue to be a source of about 20.59 MtC to the atmosphere. The implications of these results in the context of increasing anthropogenic pressure on open and scrub forests and their contribution to carbon source from land use change and forestry sector are discussed. Some of the mitigation aspects to reduce greenhouse gas emissions from land use change and forestry sector in India are also reviewed in the study.  相似文献   
4.
To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30 degrees C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (N ava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH(4) production (P CH4). There was a significant relationship between decomposable C and available N (N ava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fe total) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: P CH4 = 1.593N(ava) - 2.460Fe total/1000 (each unit was mg kg(-1) soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).  相似文献   
5.
Yakata N  Sudo Y  Tadokoro H 《Chemosphere》2006,64(11):1885-1891
Seven compounds with different lipophilicities and structures—1,3,5-trichlorobenzene, pentachlorobenzene, acenaphthylene, 1,4-dimethyl-2-(1-methylphenyl)benzene, 4-ethylbiphenyl, 4,4′-dibromobiphenyl, and 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane—were subjected to bioconcentration tests in carp at concentrations below the water solubilities of the compounds in the presence or absence of a dispersant (either an organic solvent or a surfactant). The bioconcentration factors (BCFs) of the compounds were on the order of 102–104. The BCF values remained in the range of 15–49% for all the compounds, whether or not a dispersant was present, i.e., the BCF values in the presence of an organic solvent or a surfactant at a concentration below the critical micelle concentration were not significantly smaller than the BCF values in the absence of the solvent or surfactant. This result indicates that the dispersants had no influence on the evaluation of the bioconcentration potential of these test substances.  相似文献   
6.
The relationship between the content of various forms of phosphorus in lakesediments and the amount of phosphorus released under aerobic and anaerobic conditions was studied. Total phosphorus content in the sediment of Lake Kasumigaura was highest at the 0–5 cm surface layer and decreased with depth. The constant value below 15 cm was consistent with the decrease of iron-bound phosphorus conent (FeP). The amount of phosphorus released from the sediments was proportional to the decrease of FeP under both aerobic and anaerobic conditions. Under anaerobic conditions, 90% of the FeP initially held in the sediments was released in 55 days. Using dialysis apparatus, maximum growth yield of algae was shown to be linearly dependent on the amount of phosphorus released under aerobic conditions.  相似文献   
7.
ABSTRACT

The aim of this study is to assess the disappearance of boscalid (IUPAC name: 2-chloro-N-[2-(4-chlorophenyl)phenyl]pyridine-3-carboxamide) and pyraclostrobin (IUPAC name: methyl N-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-N-methoxycarbamate) residues in apple fruit, and to verify whether an organic fertilizer enriched with strains of antagonistic microorganisms can reduce pesticide residue levels. Field trials were conducted in a commercial orchard on apples of the Gloster variety, during 21 days after the treatment with Bellis 38 WG and the subsequent application of Zumba Plant formulation containing Bacillus spp., Trichoderma spp. and Glomus spp. In control samples, the decrease rate of boscalid and pyraclostrobin residue levels followed an exponential function, described by formulae Rt = 0.2824e?0.071t and Rt = 0.1176e?0.060t, with the coefficient of determination of r2 = 0.8692 and r2 = 0.9268, respectively. These levels dropped to half (t1/2) of their initial values after 9.8 and 11.5 days, respectively. The treatment with Zumba Plant resulted in a reduction in boscalid and pyraclostrobin residue levels by 52% and 41%, respectively. The results of this study are of importance for horticulture sciences and for producers of apples using plant protection products (PPPs).  相似文献   
8.
The objective of this study was to investigate the properties of poly(vinyl alcohol)/chitosan nanocomposite films reinforced with different concentration of amorphous LCNFs. The properties analyzed were morphological, physical, chemical, thermal, biological, and mechanical characteristics. Oil palm empty fruit bunch LCNFs obtained from multi-mechanical stages were more dominated by amorphous region than crystalline part. Varied film thickness, swelling degree, and transparency of PVA/chitosan nanocomposite films reinforced with amorphous part were produced. Aggregated LCNFs, which reinforced PVA/chitosan polymer blends, resulted in irregular, rough, and uneven external surfaces as well as protrusions. Based on XRD analysis, there were two or three imperative peaks that indicated the presence of crystalline states. The increase in LCNFs concentration above 0.5% to PVA/chitosan polymer blends led to the decrease in crystallinity index of the films. A noticeable alteration of FTIR spectra, which included wavenumber and intensity, was obviously observed along with the inclusion of amorphous LCNFs. That indicated that a good miscibility between amorphous LCNFs and PVA/chitosan polymer blend generated chemical interaction of those polymers during physical blending. Reinforcement of PVA/chitosan polymer blends with amorphous LCNFs influenced the changes of Tg (glass transition temperature), Tm (melting point temperature), and Tmax (maximum degradation temperature). Three thermal phases of PVA/chitosan/LCNFs nanocomposite films were also observed, including absorbed moisture evaporation, PVA and chitosan polymer backbone structural degradation and LCNFs pyrolysis, and by-products degradation of these polymers. The addition of LCNFs 0.5% had the highest tensile strength and the addition of LCNFs above 0.5% decreased the strength. The incorporation of OPEFB LCNFs did not show anti-microbial and anti-fungal properties of the films. The addition of amorphous LCNFs 0.5% into PVA/chitosan polymer blends resulted in regular and smooth external surfaces, enhanced tensile strength, increased crystallinity index, and enhanced thermal stability of the films.  相似文献   
9.
The bioconcentration factors (BCFs) of seven new aryl fluoroalkyl ethers--four bis-4-tetrafluoroethoxyphenyl-type (bis-type) compounds and three mono-4-tetrafluoroethoxyphenyl-type (mono-type) compounds--were obtained by bioconcentration tests using common carp. The BCFs of 4 of the 7 ethers were higher than 5000, indicating their high bioconcentration potential. The bioconcentration characteristics of the bis-type compounds were different from those of the mono-type compounds and non-fluoro diphenylmethanes with a similar skeleton structure to the bis-type compounds, in taking longer to reach a plateau and having a slower elimination rate and in their distribution patterns in the fish body. The BCF of 1 bis-type compound was much higher than the value predicted by an accepted correlation equation between BCF and P(ow). In addition, the logP(ow) of the bis-type compounds calculated by commercially available computer software was remarkably different from that measured.  相似文献   
10.
The spatial variability of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes from forest soil with high nitrogen (N) deposition was investigated at a rolling hill region in Japan. Gas fluxes were measured on July 25th and December 5th, 2008 at 100 points within a 100 × 100 m grid. Slope direction and position influenced soil characteristics and site-specific emissions were found. The CO2 flux showed no topological difference in July, but was significantly lower in December for north-slope with coniferous trees. Spatial dependency of CH4 fluxes was stronger than that of CO2 or N2O and showed a significantly higher uptake in hill top, and emissions in the valley indicating strong influence of water status. N2O fluxes showed no spatial dependency and exhibited high hot spots at different topology in July and December. The high N deposition led to high N2O fluxes and emphasized the spatial variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号