首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   2篇
社会与环境   1篇
  2011年   1篇
  2007年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 8 毫秒
1
1.
Rehabilitation of degraded forest land through implementation of carbon-sink projects can increase terrestrial carbon (C) stock. However, carbon emissions outside the project boundary, which is commonly referred to as leakage, may reduce or negate the sequestration benefits. This study assessed leakage from carbon-sink projects that could potentially be implemented in the study area comprised of 11 sub-districts in the Batanghari District, Jambi Province, Sumatra, Indonesia. The study estimates the probability of a given land use/cover being converted into other uses/cover, by applying a logit model. The predictor variables were: proximity to the center of the land use area, distance to transportation channel (road or river), area of agricultural land, unemployment (number of job seekers), job opportunities, population density and income. Leakage was estimated by analyzing with and without carbon-sink projects scenarios. Most of the predictors were estimated as being significant in their contribution to land use cover change. The results of the analysis show that leakage in the study area can be large enough to more than offset the project’s carbon sequestration benefits during the period 2002–2012. However, leakage results are very sensitive to changes of carbon density of the land uses in the study area. By reducing C-density of lowland and hill forest by about 10% for the baseline scenario, the leakage becomes positive. Further data collection and refinement is therefore required. Nevertheless, this study has demonstrated that regional analysis is a useful approach to assess leakage.  相似文献   
2.
Land use, land-use change and forestry (LULUCF) projects may becomeeligible under Article 12 of the United Nations Framework Convention onClimate Change (UNFCCC) Kyoto Protocol's Clean DevelopmentMechanism (CDM). Some of the issues, which need to be addressed,include identifying the types of greenhouse gas (GHG) mitigation activitiesin LULUCF, which could be undertaken as CDM projects. Other issuesinvolve evaluating the mitigation potential and cost effectiveness of theactivities, as well as their likely socio-economic impacts and their influenceon the national carbon (C) stock. Three broad categories of mitigationactivities in LULUCF analyzed in this study include managing Cstorage, C conservation and carbon substitution. The C intensityof the activities was estimated to range from 37 to 218 Mg C per ha. The highest is in reforested land with slow growing species and the lowestin short-rotation plantations. At a real discount rate of 10%, investmentcosts required to implement the mitigation activities ranged from US$0.07 to 0.88 per Mg C, with life cycle costs ranging from US$ 0.07to 3.87 per Mg C, and benefits ranging from US$ –0.81 to 6.57 perMg C. Mitigation options with negative benefits are forest protection,reforestation, reduced impact logging and enhanced natural regeneration,while those with positive benefits are short rotation timber plantation, andbio-energy. Reforestation gave negative benefit since no revenue fromwood as trees are left in the forest for conservation, while Reduced ImpactLogging (RIL) and Enhanced Natural Regeneration (ENR)gave negative benefits because additional cost required to implement theoptions could not be compensated by the increase in round-hardwoodyield. Other factor is that the local price of round-hardwood is very low,i.e. US$ 160 per m3, while FOB price is between 250–400 US$ per m3. Total area available for implementing mitigationoptions (planting trees) in 1997 was 31 million hectares (× 106ha) (about 40% are critical lands, 35% grasslands and 25%unproductive lands).Total area being considered for implementing the options under baseline,government-plans and mitigation scenarios in the period 2000–2030 is12.6, 16.3 and 23.6 × 106 ha respectively. Furthermore, total area of production forest being considered for implementing reduced impactlogging and enrichment planting under the tree scenarios is 9, 26 and 16 × 106 ha respectively, and that for forest protection is 2.1, 3.7, 3.1× 106 ha respectively. The cumulative investment for implementingall mitigation activities in the three scenarios was estimated at 595, 892and 1026 million US$ respectively. National C stock under thebaseline scenario will continuously decline through 2030, while undergovernment-plans and mitigation scenarios the carbon stock increases. In2030, national C stock of the government and mitigation scenarios isalmost the same, 13% higher than that of baseline. However, the increasein national carbon stock in both scenarios could not offset carbon emissionsdue to deforestation.  相似文献   
3.
Adaptation to climate-change impacts requires understanding of where impacts are to be expected and what their magnitude may be. Adaptation funds are only a limited resource for helping affected parties in coping with climate-change impacts. The application of suitable methods helps to determine the recipients of adaptation aid. A quantification of impacts based on different impact analyses can aid in taking on various perspectives on the same problem in order to identify the appropriate perspective for the given decision-making context or for identifying impact patterns. Once executed, this prioritizes adaptation needs and finding a suitable allocation rule, given the policy makers perception of the decision-making context. The study introduces a set of methods of spatially explicit, sub-national (province level), and country-wide impact analyses regarding inundation impacts on agricultural areas for four important food crops in Indonesia. These methods are applied to a 1 and 2 m sea-level rise scenario and include a novel approach for impact analyses, data envelopment analysis, which is not widely used in environmental studies as of yet. Based on the given case study, the paper demonstrates the applicability of these methods and identifies impact patterns.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号