首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   1篇
环保管理   4篇
综合类   8篇
基础理论   2篇
污染及防治   11篇
评价与监测   4篇
社会与环境   1篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1993年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
2.
The environmental impact of loss of natural stream and riparian habitat is of concern throughout the United States and Europe. Environmental impacts related to such activities as channelization of and levee construction along streams and rivers are particularly apparent in the Midwestern United States. The objective of the research presented here was to delineate the extent, relative degree of impact, and implications for management of channelization and levee construction along watercourses located in the state of Illinois. According to records maintained through the Illinois Streams Information System data base (Illinois Department of Conservation), nearly 25% of surface water resources in the state have been modified directly by channelization and/or levee construction. Reviews of agency records, elaboration of case histories, interviews with agency personnel, and inspections of impacted sites indicated that these alterations have occurred without the benefit of effective mitigation. Although permit records may provide suggestions for mitigation to be incorporated in the design of a particular project, permits issued generally do not require even minimal instream habitat and bank stabilization efforts in conjunction with channel alteration. Information derived from policy and case study analyses suggests that institutional constraints, rather than lack of particular understanding about mitigation, provide major barriers to protecting the state's surface water resources in terms of regulatory review, policy interpretation and implementation, and project evaluation. Recommendations for environmental management efforts regarding these and similar channel alterations are elaborated from these findings.  相似文献   
3.
Exposure to lead (Pb) may affect adversely human health. Mapping soil Pb contents is essential to obtain a quantitative estimate of potential risk of Pb contamination. The main aim of this paper was to determine the soil Pb concentrations in the urban and peri-urban area of Cosenza–Rende to map their spatial distribution and assess the probability that soil Pb concentration exceeds a critical threshold that might cause concern for human health. Samples were collected at 149 locations from residual and non-residual topsoil in gardens, parks, flower-beds, and agricultural fields. Fine earth fraction of soil samples was analyzed by X-ray Fluorescence spectrometry. Stochastic images generated by the sequential Gaussian simulation were jointly combined to calculate the probability of exceeding the critical threshold that could be used to delineate the potentially risky areas. Results showed areas in which Pb concentration values were higher to the Italian regulatory values. These polluted areas were quite large and likely, they could create a significant health risk for human beings and vegetation in the near future. The results demonstrated that the proposed approach can be used to study soil contamination to produce geochemical maps, and identify hot-spot areas for soil Pb concentration.  相似文献   
4.

Introduction  

Acidic and metal(oid)-rich topsoils resulted after 34 years of continuous operations of a copper smelter in the Puchuncaví valley, central Chile. Currently, large-scale remediation actions for simultaneous in situ immobilization of metals and As are needed to reduce environmental risks of polluted soils. Aided phytostabilization is a cost-effective alternative, but adequate local available soil amendments have to be identified and management options have to be defined.  相似文献   
5.
Potted plants of Ailanthus altissima, produced by root suckers coming from a single symptomatic mother tree, were placed in two sites in the vicinity of Florence (central Italy), with different levels of ozone pollution. These plants were kept in well watered conditions during the period May-September 1999. In the high pollution site (Settignano-SET) the level of ozone exposure (AOT40) reached at the end of the season a value of 31 ppm h, whereas in the "low pollution" site (Cascine-CAS) the exposure to ozone was 11 ppm h. A. altissima showed foliar symptoms in early July at SET and in the second half of July at CAS when exposure values reached 5 ppm h at both sites. However, at the end of August the conditions of the plantlets were rather similar in both sites. Microscopic and ultrastructural analysis were performed at the first onset of symptoms at SET (the CAS leaflets were asymptomatic). Observing the upper leaf surface where the brown stipples were visible, it was found that the cells of the palisade mesophyll displayed loss of chlorophyll and the organelles in the cytoplasm were damaged. Swelling of thylacoids was observed in the CAS leaflets, thus indicating the possible onset of a pre-visual damage. The injured cells were separated from the healthy ones by a layer of callose. We conclude that the sensitivity to ozone of A. altissima leaves is related to its leaf structure, with low leaf density and large intercellular spaces. Cell walls, as well as acting as mechanical barriers against the spread of ozone within the cell, also provide important detoxifying processes.  相似文献   
6.
We describe two applications of a recently introduced system for very precise, continuous measurement of water oxygen saturation. Oxygen microoptodes (based on the dynamic fluorescence quenching principle) with a tip diameter of ~50 µm, an eight-channel optode array, an intermittent flow system, and online data registration were used to perform two types of experiments. The metabolic activity of Antarctic invertebrates (sponges and scallops) was estimated in respiration experiments, and, secondly, oxygen saturation inside living sponge tissue was determined in different flow regimes. Even in long-term experiments (several days) no drift was detectable in between calibrations. Data obtained were in excellent correspondence with control measurements performed with a modified Winkler method. Antarctic invertebrates in our study showed low oxygen consumption rates, ranging from 0.03-0.19 cm3 O2 h-1 ind.-1. Oxygen saturation inside living sponge specimens was affected by flow regime and culturing conditions of sponges. Our results suggest that oxygen optodes are a reliable tool for oxygen measurements beyond the methodological limits of traditional methods.  相似文献   
7.
The fuel matrix used in Brazil is unique around the world. The intensive use of hydrated ethanol, gasohol (gasoline with 25% v/v of ethanol), compressed natural gas (CNG), and biodiesel leads to a peculiar composition of the urban atmosphere. From 1998 to 2002 an increase in formaldehyde levels was observed and since then, a reduction. This work presents a monitoring campaign that was executed from March 2004 to February 2009 by sampling at early morning on every sunny Wednesday for a total of 183 samples. The results indicate a strong reduction in formaldehyde levels from 2004 (average of 135.8 μg m?3 with SD 28.4 μg m?3) to 2009 (average of 49.3 μg m?3 with SD 27.4 μg m?3). The levels of acetaldehyde showed a slight reduction from 2004 (average of 34.9 μg m?3 with SD 8.0 μg m?3) to 2009 (average of 26.8 μg m?3 with SD 11.5 μg m?3). Comparing the results with the concurrent evolution of the fleet and of fuel composition indicates that the observed formaldehyde levels could be associated with the increase in ethanol use and in CNG use by engines with improved technology over the first converted CNG engines. Modelling studies using the OZIPR trajectory model and the SAPRC chemical mechanism indicate that formaldehyde is the main ozone precursor in Rio de Janeiro and acetaldehyde is the forth one.  相似文献   
8.
A new analytical method was developed for the determination of formaldehyde in ambient air based on the use of a modified configuration of the Analyst® passive sampler. It consists of a polyethylene cylinder filled with appropriate reactive adsorbent and a special anti-turbulence net which works as an ozone scrubber.The performance of a diffusive sampler depends critically on the selection and use of a suitable adsorbent and on environmental factors, such as temperature, humidity and the interference of oxidant species. In this study two adsorbent types were investigated: 2,4-dinitrophenylhydrazine (2,4-DNPH) coated silica gel and Florisil® particles. Interference of ozone was removed by using a silver net upstream as an anti-turbulence device. The performance of this net was then compared with that of stainless steel. Furthermore, the aim of the work was the optimization of the adsorbent type and the study of the interference of ozone with particular attention placed on the effect of relative humidity and temperature.A dynamic system for generating a known concentration of the test gas (formaldehyde) in an appropriate exposure chamber was used to evaluate the performance of the passive sampler and to allow the calibration of the methodology. Inter-comparisons with a reference method, active sampling using 2,4-DNPH-silica gel coated cartridges, were also carried out. Results were in accordance with each other.Tests were planned using a statistical method based on Design of Experiment methodology. The operating conditions were chosen in order to obtain the best configuration of the passive device by evaluating the statistical significance of the different factors and their interactions by analysis of variance.Results showed that the best configuration was achieved using 2,4-DNPH Florisil® coated particles as an adsorbent and a silver anti-turbulence net as an ozone scrubber.With the aim of achieving further results in realistic conditions, some field experiments were also carried out.  相似文献   
9.
10.
The alterations in the salinity profile are an indirect, but potentially sensitive, indicator for detecting changes in precipitation, evaporation, river run-off, glacier retreat, and ice melt. These changes have a high impact on the growth of coastal plant species, such as mangroves. Here, we present estimates of the variability of salinity and the biomass of a stenoecious mangrove species (Heritiera fomes, commonly referred to as Sundari) in the aquatic subsystem of the lower Gangetic delta based on a dataset from 2004 to 2015. We highlight the impact of salinity alteration on the change in aboveground biomass of this endangered species that, due to different salinity profile in the western and central sectors of the lower Gangetic plain, shows an increase only in the former sector, where the salinity is dropping and low growth in the latter, where the salinity is increasing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号