首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
  国内免费   1篇
废物处理   1篇
环保管理   7篇
综合类   1篇
基础理论   11篇
污染及防治   19篇
评价与监测   1篇
社会与环境   1篇
  2023年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   16篇
  2011年   1篇
  2007年   1篇
  2006年   2篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Risk characterization is defined by both the U.S. National Academy of Sciences and the U.S. EPA as the estimation of human health risk due to harmful (i.e., toxic or carcinogenic) substances or organisms. Risk characterization studies are accomplished by integrating quantitative exposure estimates and dose-response relationships with the qualitative results of hazard identification.

A Risk Characterization Framework has been developed to encourage a systematic approach for analysis and presentation of risk estimates. This methodology subdivides the four common components of the risk assessment process into ten elements. Each of these elements is based on a term in a predictive risk equation. The equation allows independent computations of exposure, dose, lifetime individual risk, and risk to affected populations. All key assumptions in the predictive risk equation can be explicitly shown. This is important to understand the basis and inherent uncertainties of the risk estimation process.

The systematic treatment of each of the ten elements in this framework aids in the difficult job of comparing risk estimates by different researchers using different methodologies. The Risk Characterization Framework has been applied to various indoor and outdoor air pollutants of a carcinogenic nature. With further development, it also promises to be applicable to noncarcinogenic effects.  相似文献   
2.
ABSTRACT: Most hydrologic models require input parameters which represent the variability found across an entire landscape. The estimation of such parameters is very difficult, particularly on rangeland. Improved model parameter estimation procedures are needed which incorporate the small-scale and temporal variability found on rangeland. This study investigates the use of a surface soil classification scheme to partition the spatial variability in hydrologic and interrill erosion processes in a sagebrush plant community. Four distinct microsites were found to exist within the sagebrush coppice-dune dune-interspace complex. The microsites explained the majority of variation in hydrologic and interrill erosion response found on the site and were discernable based on readily available soil and vegetation information. The variability within each microsite was quite low and was not well correlated with soil and vegetation properties. The surface soil classification scheme defined in this study can be quite useful for defining sampling procedures, for understanding hydrologic and erosion processes, and for parameterizing hydrologic models for use on sagebrush range-land.  相似文献   
3.
4.
5.
Environmental compliance requirements periodically impact the military's ability to use all installation resources. In response, environmental management strategies have been developed to ensure compliance and allow site closure. This study examines the relationship between environmental management strategies and environmental compliance at U.S. Marine Corps (USMC) installations via analysis of environmental compliance audit scores. Five environmental scores of interest from 1998 to 2004 audits—which include total compliance, total management, audit management, policy management, and training management—were subjected to statistical analysis. Results showed the USMC met environmental compliance and management standards, despite limited resources. High management strategy scores were moderately correlated with high total compliance scores. Total management scores improved over time, and noncompliance was most often associated with a lack of resources and plans. © 2006 Wiley Periodicals, Inc.  相似文献   
6.
A seasonal study of arsenic in groundwater,Snohomish County,Washington, USA   总被引:2,自引:0,他引:2  
A series of arsenic poisonings near Granite Falls in Snohomish County, Washington, were identified during 1985–87. An initial investigation revealed the source of arsenic exposure to be high levels of arsenic in well water. A large number of wells in eastern Snohomish County were tested, residents were interviewed and sources of contamination, both natural and man-made, were investigated. More than 70 private drinking-water wells were found to contain elevated levels of arsenic . One well contained 33 mg As L–1. The finding of elevated arsenic levels in a previously approved drinking-water well for a restaurant, plus suggestions of symptoms consistent with arsenic poisoning among people with wells with no detectable arsenic, raised concern over possible temporal variation in arsenic levels. To evaluate this temporal variation, a 12-month study of arsenic in groundwater was conducted in selected wells near Granite Falls. The 12-month study of 26 wells, conducted between February 1988 and January 1989, found arsenic levels for individual wells to vary from one to 19 fold over time. Because of this variability, four out of the eight wells with arsenic levels close to the Maximum Contamination Level (MCL) of 0.050 mg As L–1 would have been considered safe on the basis of a single sample, but would have exceeded the MCL at another time of the year.In areas with a high occurrence of arsenic contaminated drinking water, approval of well water prior to the sale of a house or issuance of a building permit which is based on a single arsenic test may result in later findings of unacceptable drinking water. When the arsenic is near the MCL, it may be prudent to follow well-water arsenic concentrations over time to assure that the arsenic level remains within acceptable bounds. If lower arsenic standards are adopted for drinking water, the issue of temporal variation around the standard will become a matter of more widespread concern.To whom correspondence should be addressed. The contents of this paper do not necessarily reflect the views and policies of the US Environmental Protection Agency.  相似文献   
7.
Erionite, a mineral series within the zeolite group, is classified as a Group 1 known respiratory carcinogen. This designation resulted from extremely high incidences of mesothelioma discovered in three small villages from the Cappadocia region of Turkey, where the disease was linked to environmental exposures to fibrous forms of erionite. Natural deposits of erionite, including fibrous forms, have been identified in the past in the western United States. Until recently, these occurrences have generally been overlooked as a potential hazard. In the last several years, concerns have emerged regarding the potential for environmental and occupational exposures to erionite in the United States, such as erionite-bearing gravels in western North Dakota mined and used to surface unpaved roads. As a result, there has been much interest in identifying locations and geologic environments across the United States where erionite occurs naturally. A 1996 U.S. Geological Survey report describing erionite occurrences in the United States has been widely cited as a compilation of all US erionite deposits; however, this compilation only focused on one of several geologic environments in which erionite can form. Also, new occurrences of erionite have been identified in recent years. Using a detailed literature survey, this paper updates and expands the erionite occurrences database, provided in a supplemental file (US_erionite.xls). Epidemiology, public health, and natural hazard studies can incorporate this information on known erionite occurrences and their characteristics. By recognizing that only specific geologic settings and formations are hosts to erionite, this knowledge can be used in developing management plans designed to protect the public.  相似文献   
8.
9.
The prospect of unprecedented environmental change, combined with increasing demand on limited resources, demands adaptive responses at multiple levels. In this article, we analyze different attributes of farm-level capacity in central Arizona, USA, in relation to farmers’ responses to recent dynamism in commodity and land markets, and the institutional and social contexts of farmers’ water and production portfolios. Irrigated agriculture is at the heart of the history and identity of the American Southwest, although the future of agriculture is now threatened by the prospect of “mega-droughts,” urbanization and associated inter-sector and inter-state competition over water in an era of climatic change. We use farm-level survey data, supplemented by in-depth interviews, to explore the cross-level dimensions of capacity in the agriculture–urban nexus of central Arizona. The surveyed farmers demonstrate an interest in learning, capacity for adaptive management and risk-taking attitudes consistent with emerging theory of capacity for land use and livelihood transformation. However, many respondents perceive their self-efficacy in the face of future climatic and hydrological change as uncertain. Our study suggests that the components of transformational capacity will necessarily need to go beyond the objective resources and cognitive capacities of individuals to incorporate “linking” capacities: the political and social attributes necessary for collective strategy formation to shape choice and opportunity in the future.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号