首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   6篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The presence of maternal cells in fetal samples constitutes a serious potential source for prenatal misdiagnosis. Here we present our approach for detecting maternal cell contamination (MCC) at prenatal diagnosis for eight monogenic disorders (autosomal recessive: β-thalassaemia, sickle-cell anaemia, cystic fibrosis, prelingual deafness; autosomal dominant: achondroplasia, Huntington disease, myotonic dystrophy, neurofibromatosis type I; X-linked: spinobulbar muscular atrophy). Our aim was to apply a simple and low-cost approach, which would easily and accurately provide information on the fetal tissue MCC status. MCC testing was applied to cases of recessive inheritance where the primary mutation screening of the fetus revealed the presence of the maternal mutation, to cases concerning dominant inheritance and to cases of multiple gestation. The potential presence of maternal cells was determined by the amplification of the 3′-HVR/APO B, D1S80, THO1 and VNTRI of vWf polymorphic loci, which have previously demonstrated high heterozygosity in Caucasians. Among 135 prenatal diagnoses, 44 finally needed to be tested for MCC (32.6%). MCC was detected in four cases, where DNA was isolated directly from chorionic villi samples (CVS), and in one case with DNA isolated directly from amniotic fluid (AF). In almost 90% of cases a simple test of one polymorphic locus provided sufficient information about MCC. The choice of the appropriate locus is therefore essential, while the simultaneous screening of both parents provides the means for distinguishing non-informative sites about MCC. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
3.
4.
Two rare de novo structural aberrations of the Y chromosome were detected during routine prenatal diagnosis: a satellited non-fluorescent Y chromosome (Yqs), the first de novo Yqs to be reported in a fetus, and a terminal deletion of the Y chromosome long arm del(Y)(q11). In both cases detailed cytogenetic and molecular analyses were undertaken. In the case of the Yqs it was demonstrated by fluorescence in situ hybridization (FISH) that the satellites were derived from chromosome 15. In the case of the del(Yq), it was shown with molecular analysis by polymerase chain reaction (PCR) amplification of sequence-tagged sites (STS-PCR) that the deleted portion of the long arm of chromosome Y included the azoospermia factor loci, AZFb and AZFc. The clinical significance of these findings is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号