首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   3篇
  2022年   3篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.

The world is experiencing an energy crisis and environmental issues due to the depletion of fossil fuels and the continuous increase in carbon dioxide concentrations. Microalgal biofuels are produced using sunlight, water, and simple salt minerals. Their high growth rate, photosynthesis, and carbon dioxide sequestration capacity make them one of the most important biorefinery platforms. Furthermore, microalgae's ability to alter their metabolism in response to environmental stresses to produce relatively high levels of high-value compounds makes them a promising alternative to fossil fuels. As a result, microalgae can significantly contribute to long-term solutions to critical global issues such as the energy crisis and climate change. The environmental benefits of algal biofuel have been demonstrated by significant reductions in carbon dioxide, nitrogen oxide, and sulfur oxide emissions. Microalgae-derived biomass has the potential to generate a wide range of commercially important high-value compounds, novel materials, and feedstock for a variety of industries, including cosmetics, food, and feed. This review evaluates the potential of using microalgal biomass to produce a variety of bioenergy carriers, including biodiesel from stored lipids, alcohols from reserved carbohydrate fermentation, and hydrogen, syngas, methane, biochar and bio-oils via anaerobic digestion, pyrolysis, and gasification. Furthermore, the potential use of microalgal biomass in carbon sequestration routes as an atmospheric carbon removal approach is being evaluated. The cost of algal biofuel production is primarily determined by culturing (77%), harvesting (12%), and lipid extraction (7.9%). As a result, the choice of microalgal species and cultivation mode (autotrophic, heterotrophic, and mixotrophic) are important factors in controlling biomass and bioenergy production, as well as fuel properties. The simultaneous production of microalgal biomass in agricultural, municipal, or industrial wastewater is a low-cost option that could significantly reduce economic and environmental costs while also providing a valuable remediation service. Microalgae have also been proposed as a viable candidate for carbon dioxide capture from the atmosphere or an industrial point source. Microalgae can sequester 1.3 kg of carbon dioxide to produce 1 kg of biomass. Using potent microalgal strains in efficient design bioreactors for carbon dioxide sequestration is thus a challenge. Microalgae can theoretically use up to 9% of light energy to capture and convert 513 tons of carbon dioxide into 280 tons of dry biomass per hectare per year in open and closed cultures. Using an integrated microalgal bio-refinery to recover high-value-added products could reduce waste and create efficient biomass processing into bioenergy. To design an efficient atmospheric carbon removal system, algal biomass cultivation should be coupled with thermochemical technologies, such as pyrolysis.

  相似文献   
2.

The rising occurrence of emerging contaminants in sludges both inhibits the anaerobic digestion of sludges and induces health issues when sludges are recycled in agriculture, calling for methods to remove contaminants. Here we review emerging pollutants in wastewater treatment plants, before and after anaerobic digestion. We present their inhibitory effects and remediation methods to alleviate inhibition. Pharmaceuticals have been detected in about 50% of the sludge samples. Sewage sludge contaminants include 19% of diuretics, 16–21% of lipid-modifying agents, hydrochlorothiazide, diclofenac, furosemide, clarithromycin, atorvastatin, and carbamazepine. Levels of antibiotics, azithromycin, ciprofloxacin, and estrone range from 500 to 600 ng/g in sludges from wastewater treatment plants. Remediation methods comprise electrooxidation, ultrasonication, thermal hydrolysis, ozonation, and bioaugmentation. Fermenting the sludges with acidogenic bacteria reduces the level of emerging pollutants in the supernatant. Nonetheless, liquid digestates still contains emerging pollutants such as sunscreen octocrylene at 147 ug/L and acetaminophen at 58.6 ug/L. As a result, pretreatment of sludge containing emerging pollutants is required.

  相似文献   
3.

Solid wastes from domestic, industrial and agricultural sectors cause acute economic and environmental problems. These issues can be partly solved by anaerobic digestion of wastes, yet this process is incomplete and generates abundant byproducts as digestate. Therefore, cultivating mixotrophic algae on anaerobic digestate appears as a promising solution for nutrient recovery, pollutant removal and biofuel production. Here we review mixotrophic algal cultivation on anaerobic waste digestate with focus on digestate types and characterization, issues of recycling digestate in agriculture, removal of contaminants, and production of biofuels such as biogas, bioethanol, biodiesel and dihydrogen. We also discuss applications in cosmetics and economical aspects. Mixotrophic algal cultivation completely removes ammonium, phosphorus, 17β-estradiol from diluted digestate, and removes 62% of zinc, 84% of manganese, 74% of cadmium and 99% of copper.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号