首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础理论   4篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The threat-sensitivity hypothesis predicts that prey individuals will increase antipredator behaviors as apparent predator risk increases. An implicit assumption of the threat-sensitivity hypothesis is that predator risk is additive. In other words, all characteristics of a predator that indicate risk should contribute in an additive way to determine the degree of risk-sensitive behavior. We tested this assumption in the laboratory by presenting live predators (green sunfish, Lepomis cyanellus) to groups of western mosquitofish (Gambusia affinis). We examined effects of predator diet, hunger level, and size on predator avoidance and inspection behavior of mosquitofish. Both predator diet and predator hunger level were significant and additive determinants of distance maintained from a predator, resulting in a graded response to combinations of these predator cues. In contrast, whereas predator diet was the most important determinant of general avoidance distances, predator hunger level was more important in determining mosquitofish vertical distribution and inspection behavior. Thus, the relationship between predator cue and the antipredator behavior that it elicits is dependent on which cues and behaviors are examined. Our data suggest that during risky behaviors, such as predator inspection, mosquitofish rely mainly on visual cues (behavior differences between hungry and satiated predators), whereas general avoidance behavior is determined by additive responses from visual and chemical cues.  相似文献   
2.
Wesner JS  Billman EJ  Belk MC 《Ecology》2012,93(7):1674-1682
Models of habitat selection often assume that organisms choose habitats based on their intrinsic quality, regardless of the position of these habitats relative to low-quality habitats in the landscape. We created a habitat matrix in which high-quality (predator-free) aquatic habitat patches were positioned adjacent to (predator-associated) or isolated from (control) patches with single or two species of caged predators. After 16 days of colonization, larval insect abundance was reduced by 50% on average in both the predator and predator-associated treatments relative to isolated controls. Effects were largely similar among predator treatments despite variation in number of predator species, predator biomass, and whether predators were native or nonnative. Importantly, the strength of effects did not depend on whether predators were physically present. These results demonstrate that predator cues can cascade with equal strength across ecological boundaries, indirectly altering community assembly via habitat selection in intrinsically high-quality habitats.  相似文献   
3.
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号