首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   3篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
In the Western Mediterranean Sea, the gorgonian Eunicella singularis (Esper, 1794) is found at high densities on sublittoral bottoms at depths from 10 to 70 m. Shallow colonies have symbiotic zooxanthellae that deeper colonies lack. While knowledge of the ecology of the shallow populations has increased during the last decades, there is almost no information on the ecology of the deep sublittoral populations. In October and November 2004 at Cap de Creus (42°19′12″ N; 03°19′34″ E), an analysis of video transects made by a remotely operated vehicle showed that shallow populations (10–25 m depth) were dominated by small, non-reproductive colonies, while deep sublittoral populations (50–67 m depth) were dominated by medium-sized colonies. Average and maximum colony heights were greater in the deeper populations, with these deeper populations also forming larger patch sizes and more extensive regions of continuous substrate coverage. These results suggest that shallow habitats are suitable for E. singularis, as shown by the high recruitment rate, but perturbations may limit or delay the development of these populations into a mature stage. This contrasts with the deep sublittoral habitats where higher environmental stability may allow the development of mature populations dominated by larger, sexually mature colonies.  相似文献   
2.
Belote RT  Jones RH  Hood SM  Wender BW 《Ecology》2008,89(1):183-192
Research examining the relationship between community diversity and invasions by nonnative species has raised new questions about the theory and management of biological invasions. Ecological theory predicts, and small-scale experiments confirm, lower levels of nonnative species invasion into species-rich compared to species-poor communities, but observational studies across a wider range of scales often report positive relationships between native and nonnative species richness. This paradox has been attributed to the scale dependency of diversity-invasibility relationships and to differences between experimental and observational studies. Disturbance is widely recognized as an important factor determining invasibility of communities, but few studies have investigated the relative and interactive roles of diversity and disturbance on nonnative species invasion. Here, we report how the relationship between native and nonnative plant species richness responded to an experimentally applied disturbance gradient (from no disturbance up to clearcut) in oak-dominated forests. We consider whether results are consistent with various explanations of diversity-invasibility relationships including biotic resistance, resource availability, and the potential effects of scale (1 m2 to 2 ha). We found no correlation between native and nonnative species richness before disturbance except at the largest spatial scale, but a positive relationship after disturbance across scales and levels of disturbance. Post-disturbance richness of both native and nonnative species was positively correlated with disturbance intensity and with variability of residual basal area of trees. These results suggest that more nonnative plants may invade species-rich communities compared to species-poor communities following disturbance.  相似文献   
3.
Human-caused changes in disturbance regimes and introductions of nonnative species have the potential to result in widespread, directional changes in forest community structure. The degree that plant community composition persists or changes following disturbances depends on the balance between local extirpation and colonization by new species, including nonnatives. In this study, we examined species losses and gains, and entry of native vs. exotic species to determine how oak forests in the Appalachian Mountains might shift in species composition following a gradient of pulse disturbances (timber harvesting). We asked (1) how compositional stability of the plant community (resistance and resilience) was influenced by disturbance intensity, (2) whether community responses were driven by extirpation or colonization of species, and (3) how disturbance intensity influenced total and functional group diversity, including the nonnative proportion of the flora through time. We collected data at three spatial scales and three times, including just before, one year post-disturbance, and 10 years post-disturbance. Resistance was estimated using community distance measures between pre- and one year post-disturbance, and resilience using community distance between pre- and 10-year post-disturbance conditions. The number of colonizing and extirpated species between sampling times was analyzed for all species combined and for six functional groups. Resistance and resilience decreased with increasing timber-harvesting disturbance; compositional stability was lower in the most disturbed plots, which was driven by colonization, but not extirpation, of species. Colonization of species also led to increases in diversity after disturbance that was typically maintained after 10 years following disturbance. Most of the community-level responses were driven by post-disturbance colonization of native forbs and graminoids. The nonnative proportion of plant species tended to increase following disturbance, especially at large spatial scales in the most disturbed treatments, but tended to decrease through time following disturbance due to canopy development. The results of this study are consistent with the theory that resources released by disturbance have strong influences on species colonization and community composition. The effects of management activities tested in this study, which span a gradient of timber-harvesting disturbance, shift species composition largely via an increase in species colonization and diversity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号